资源描述
精选高中模拟试卷吕梁市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 执行如图所以的程序框图,如果输入a=5,那么输出n=( )A2B3C4D52 在等比数列中,且数列的前项和,则此数列的项数等于( )A4 B5 C6 D7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.3 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D4 下列计算正确的是( )A、 B、 C、 D、5 已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da36 在等比数列中,前项和为,若数列也是等比数列,则等于( )ABCD7 已知函数f(x)=2x,则f(x)=( )A2xB2xln2C2x+ln2D8 命题“若ab,则a8b8”的逆否命题是( )A若ab,则a8b8B若a8b8,则abC若ab,则a8b8D若a8b8,则ab9 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社区抽取低收入家庭的户数为( )A48 B36 C24 D18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题10甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组70,8080,9090,100100,110频数34815分组110,120120,130130,140140,150频数15x32乙校:分组70,8080,9090,100100,110频数1289分组110,120120,130130,140140,150频数1010y3则x,y的值分别为 A、12,7 B、 10,7 C、 10,8 D、 11,911将n2个正整数1、2、3、n2(n2)任意排成n行n列的数表对于某一个数表,计算某行或某列中的任意两个数a、b(ab)的比值,称这些比值中的最小值为这个数表的“特征值”当n=2时,数表的所有可能的“特征值”的最大值为( )ABC2D312已知角的终边经过点,则的值为( )A B C. D0二、填空题13已知函数是定义在R上的奇函数,且当时,,则在R上的解析式为 14【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 15已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是_ 16阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 17函数f(x)=(x3)的最小值为18【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_三、解答题19如图,在三棱锥ABCD中,AB平面BCD,BCCD,E,F,G分别是AC,AD,BC的中点求证:(I)AB平面EFG;(II)平面EFG平面ABC20我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示()依茎叶图判断哪个班的平均分高?()现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求的分布列和数学期望;()学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的22列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)21如图,已知几何体的底面ABCD 为正方形,ACBD=N,PD平面ABCD,PD=AD=2EC,ECPD()求异面直线BD与AE所成角:()求证:BE平面PAD;()判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由22(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力23如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小24(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.吕梁市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表: p 15 20 结束q525n23结束运行的时候n=3故选:B【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果属于基础题2 【答案】B 3 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力4 【答案】B【解析】试题分析:根据可知,B正确。考点:指数运算。5 【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A6 【答案】D【解析】设的公比为,则,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D 7 【答案】B【解析】解:f(x)=2x,则f(x)=2xln2,故选:B【点评】本题考查了导数运算法则,属于基础题8 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若ab,则a8b8”的逆否命题是:若a8b8,则ab故选D【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系比较基础9 【答案】【解析】根据分层抽样的要求可知在社区抽取户数为10【答案】B【解析】1从甲校抽取11060人,从乙校抽取11050人,故x10,y7.11【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为故选:B【点评】题考查类比推理和归纳推理,属基础题12【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.二、填空题13【答案】【解析】试题分析:令,则,所以,又因为奇函数满足,所以,所以在R上的解析式为。考点:函数的奇偶性。14【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系15【答案】【解析】因为只有是中的最小项,所以,所以,故正确;,故正确;,无法判断符号,故错误,故正确答案答案: 16【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束17【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1218【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.三、解答题19【答案】 【解析】证明:(I)在三棱锥ABCD中,E,G分别是AC,BC的中点所以ABEG因为EG平面EFG,AB平面EFG所以AB平面EFG(II)因为AB平面BCD,CD平面BCD所以ABCD又BCCD且ABBC=B所以CD平面ABC又E,F分别是AC,AD,的中点所以CDEF所以EF平面ABC又EF平面EFG,所以平面平面EFG平面ABC【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键20【答案】 【解析】【专题】综合题;概率与统计【分析】()依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2,求出概率,可得的分布列和数学期望;()根据成绩不低于85分的为优秀,可得22列联表,计算K2,从而与临界值比较,即可得到结论【解答】解:()由茎叶图知甲班数学成绩集中于609之间,而乙班数学成绩集中于80100分之间,所以乙班的平均分高()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2P(=0)=,P(=1)=,P(=2)=则随机变量的分布列为012P数学期望E=0+1+2=人()22列联表为甲班乙班合计优秀31013不优秀171027合计202040K2=5.5845.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题21【答案】【解析】解:()PD平面ABCD,ECPD,EC平面ABCD,又BD平面ABCD,ECBD,底面ABCD为正方形,ACBD=N,ACBD,又ACEC=C,AC,EC平面AEC,BD平面AEC,BDAE,异面直线BD与AE所成角的为90()底面ABCD为正方形,BCAD,BC平面PAD,AD平面PAD,BC平面PAD,ECPD,EC平面PAD,PD平面PAD,EC平面PAD,ECBC=C,EC平面BCE,BC平面BCE,平面BCE平面PAD,BE平面BCE,BE平面PAD() 假设平面PAD与平面PAE垂直,作PA中点F,连结DF,PD平面ABCD,AD CD平面ABCD,PDCD,PDAD,PD=AD,F是PA的中点,DFPA,PDF=45,平面PAD平面PAE,平面PAD平面PAE=PA,DF平面PAD,DF平面PAE,DFPE,PDCD,且正方形ABCD中,ADCD,PDAD=D,CD平面PAD又DF平面PAD,DFCD,PD=2EC,ECPD,PE与CD相交,DF平面PDCE,DFPD,这与PDF=45矛盾,假设不成立即平面PAD与平面PAE不垂直【点评】本题主要考查了线面平行和线面垂直的判定定理的运用考查了学生推理能力和空间思维能力22【答案】【解析】(1)由题意,知不等式解集为由,得,2分所以,由,解得4分(2)不等式等价于,由题意知6分 23【答案】 【解析】()证明:四边形ABCD是正方形,ACBD,PD底面ABCD,PDAC,AC平面PDB,平面AEC平面PDB()解:设ACBD=O,连接OE,由()知AC平面PDB于O,AEO为AE与平面PDB所的角,O,E分别为DB、PB的中点,OEPD,又PD底面ABCD,OE底面ABCD,OEAO,在RtAOE中,AEO=45,即AE与平面PDB所成的角的大小为45【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题24【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程第 15 页,共 15 页
展开阅读全文