资源描述
嘉荫县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力2 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3 下列命题正确的是( )A已知实数,则“”是“”的必要不充分条件B“存在,使得”的否定是“对任意,均有”C函数的零点在区间内D设是两条直线,是空间中两个平面,若,则4 已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或55 下列关系式中,正确的是( )A0B00C00D=06 “”是“圆关于直线成轴对称图形”的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度7 定义某种运算S=ab,运算原理如图所示,则式子+的值为( )A4B8C10D138 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)9 双曲线:的渐近线方程和离心率分别是( )ABCD10下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=x1By=lnxCy=x3Dy=|x|11设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D612双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为( )A13B15C12D11二、填空题13定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且f(x)在1,0上是增函数,下面五个关于f(x)的命题中:f(x)是周期函数;f(x) 的图象关于x=1对称;f(x)在0,1上是增函数;f(x)在1,2上为减函数;f(2)=f(0)正确命题的个数是14已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=15在ABC中,则_16设数列an的前n项和为Sn,已知数列Sn是首项和公比都是3的等比数列,则an的通项公式an=17曲线在点(3,3)处的切线与轴x的交点的坐标为18刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下: 甲说:“我们四人都没考好” 乙说:“我们四人中有人考的好” 丙说:“乙和丁至少有一人没考好” 丁说:“我没考好”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了 三、解答题19如图1,ACB=45,BC=3,过动点A作ADBC,垂足D在线段BC上且异于点B,连接AB,沿AD将ABD折起,使BDC=90(如图2所示),(1)当BD的长为多少时,三棱锥ABCD的体积最大;(2)当三棱锥ABCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得ENBM,并求EN与平面BMN所成角的大小。20记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 21已知数列an满足a1=,an+1=an+(nN*)证明:对一切nN*,有();()0an122在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程23如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长24已知函数f(x)=ax2+2xlnx(aR)()若a=4,求函数f(x)的极值;()若f(x)在(0,1)有唯一的零点x0,求a的取值范围;()若a(,0),设g(x)=a(1x)22x1ln(1x),求证:g(x)在(0,1)内有唯一的零点x1,且对()中的x0,满足x0+x11 嘉荫县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】,故选D.2 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A3 【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),最后下结论(根据推导关系及定义下结论). 等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.4 【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C5 【答案】C【解析】解:对于A0,用“”不对,对于B和C,元素0与集合0用“”连接,故C正确;对于D,空集没有任何元素,0有一个元素,故不正确6 【答案】【解析】7 【答案】 C【解析】解:模拟执行程序,可得,当ab时,则输出a(b+1),反之,则输出b(a+1),2tan=2,lg=1,(2tan)lg=(2tan)(lg+1)=2(1+1)=0,lne=1,()1=5,lne()1=()1(lne+1)=5(1+1)=10,+=0+10=10故选:C8 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0 x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A9 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D10【答案】D【解析】解:选项A:y=在(0,+)上单调递减,不正确;选项B:定义域为(0,+),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,f(x)=(x)3=x3,f(x)=f(x),故f(x)是奇函数,又y=x3区间(0,+)上单调递增,符合条件,正确;选项D:记f(x)=|x|,f(x)=|x|=|x|,f(x)f(x),故y=|x|不是奇函数,不正确故选D11【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B12【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,双曲线上一点P到左焦点的距离为5,|x5|=24x0,x=13故选A二、填空题13【答案】3个 【解析】解:定义在(,+)上的偶函数f(x),f(x)=f(x);f(x+1)=f(x),f(x+1)=f(x),f(x+2)=f(x+1)=f(x),f(x+1)=f(x)即f(x+2)=f(x),f(x+1)=f(x+1),周期为2,对称轴为x=1所以正确,故答案为:3个14【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:115【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:216【答案】 【解析】解:数列Sn是首项和公比都是3的等比数列,Sn =3n故a1=s1=3,n2时,an=Sn sn1=3n3n1=23n1,故an=【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题17【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题18【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。三、解答题19【答案】(1)1(2)60【解析】(1)设BD=x,则CD=3xACB=45,ADBC,AD=CD=3x折起前ADBC,折起后ADBD,ADCD,BDDC=DAD平面BCDVABCD=ADSBCD=(3x)x(3x)=(x36x2+9x)设f(x)=(x36x2+9x) x(0,3),f(x)=(x1)(x3),f(x)在(0,1)上为增函数,在(1,3)上为减函数当x=1时,函数f(x)取最大值当BD=1时,三棱锥ABCD的体积最大;(2)以D为原点,建立如图直角坐标系Dxyz,20【答案】【解析】解:(1)由2x30 得 x,M=x|x由(x3)(x1)0 得 x1 或x3,N=x|x1,或 x3(2)MN=(3,+),MN=x|x1,或 x3,CR(MN)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题21【答案】 【解析】证明:()数列an满足a1=,an+1=an+(nN*),an0,an+1=an+0(nN*),an+1an=0,对一切nN*,()由()知,对一切kN*,当n2时,=31+=31+=3(1+1)=,an1,又,对一切nN*,0an1【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用22【答案】 【解析】解:()由从而C的直角坐标方程为即=0时,=2,所以M(2,0)()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,+)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化23【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力24【答案】【解析】满分(14分)解法一:()当a=4时,f(x)=4x2+2xlnx,x(0,+),(1分)由x(0,+),令f(x)=0,得当x变化时,f(x),f(x)的变化如下表:xf(x)0+f(x)极小值故函数f(x)在单调递减,在单调递增,(3分)f(x)有极小值,无极大值(4分)(),令f(x)=0,得2ax2+2x1=0,设h(x)=2ax2+2x1则f(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;(5分)当a0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=1,h(1)=2a+10,所以满足题意;(6分)当a0,=0时,此时方程的解为x=1,不符合题意;当a0,0时,由h(0)=1,只需h(1)=2a+10,得(7分)综上,(8分)(说明:=0未讨论扣1分)()设t=1x,则t(0,1),p(t)=g(1t)=at2+2t3lnt,(9分),由,故由()可知,方程2at2+2t1=0在(0,1)内有唯一的解x0,且当t(0,x0)时,p(t)0,p(t)单调递减;t(x0,1)时,p(t)0,p(t)单调递增(11分)又p(1)=a10,所以p(x0)0(12分)取t=e3+2a(0,1),则p(e3+2a)=ae6+4a+2e3+2a3lne3+2a=ae6+4a+2e3+2a3+32a=a(e6+4a2)+2e3+2a0,从而当t(0,x0)时,p(t)必存在唯一的零点t1,且0t1x0,即01x1x0,得x1(0,1),且x0+x11,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x11(14分)解法二:()同解法一;(4分)(),令f(x)=0,由2ax2+2x1=0,得(5分)设,则m(1,+),(6分)问题转化为直线y=a与函数的图象在(1,+)恰有一个交点问题又当m(1,+)时,h(m)单调递增,(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当(8分)()同解法一(说明:第()问判断零点存在时,利用t0时,p(t)+进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力第 16 页,共 16 页
展开阅读全文