大东区一中2018-2019学年上学期高二数学12月月考试题含解析

上传人:good****022 文档编号:116504759 上传时间:2022-07-05 格式:DOC 页数:17 大小:532KB
返回 下载 相关 举报
大东区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
第1页 / 共17页
大东区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
第2页 / 共17页
大东区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
第3页 / 共17页
点击查看更多>>
资源描述
大东区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11112 数列1,的前100项的和等于( )ABCD3 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM4 已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D95 如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图估计这批产品的中位数为( )A20B25C22.5D22.756 如果随机变量N (1,2),且P(31)=0.4,则P(1)等于( )A0.1B0.2C0.3D0.47 若向量=(3,m),=(2,1),则实数m的值为( )ABC2D68 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141019 设数集M=x|mxm+,N=x|nxn,P=x|0 x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD10如图,为正方体,下面结论: 平面; ; 平面.其中正确结论的个数是( )A B C D 11如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值12已知函数f(x)满足:x4,则f(x)=;当x4时f(x)=f(x+1),则f(2+log23)=( )ABCD二、填空题13某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .14已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=15已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=16设O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|BF|,则=17运行如图所示的程序框图后,输出的结果是18设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为三、解答题19在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由20设函数()求函数的最小正周期;()求函数在上的最大值与最小值21(本小题满分12分)设:实数满足不等式,:函数无极值点.(1)若“”为假命题,“”为真命题,求实数的取值范围;(2)已知“”为真命题,并记为,且:,若是的必要不充分条件,求正整数的值22已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行(1)求函数的单调区间;(2)若x1,3时,f(x)14c2恒成立,求实数c的取值范围 23已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b()求该椭圆的离心率;()已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于APQ,求该椭圆的方程24已知f(x)=x2+ax+a(a2,xR),g(x)=ex,(x)=()当a=1时,求(x)的单调区间;()求(x)在x1,+)是递减的,求实数a的取值范围;()是否存在实数a,使(x)的极大值为3?若存在,求a的值;若不存在,请说明理由 大东区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 2 【答案】A【解析】解:=1故选A3 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B4 【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C5 【答案】C【解析】解:根据频率分布直方图,得;0.025+0.045=0.30.5,0.3+0.085=0.70.5;中位数应在2025内,设中位数为x,则0.3+(x20)0.08=0.5,解得x=22.5;这批产品的中位数是22.5故选:C【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目6 【答案】A【解析】解:如果随机变量N(1,2),且P(31)=0.4,P(31)=P(1)=【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位7 【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查8 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题9 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0 x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C10【答案】【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.11【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D12【答案】A【解析】解:32+log234,所以f(2+log23)=f(3+log23)且3+log234f(2+log23)=f(3+log23)=故选A二、填空题13【答案】12【解析】考点:分层抽样14【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或1815【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题16【答案】 【解析】解:O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,直线AB的方程为y=(x),l的方程为x=,联立,解得A(, P),B(,)直线OA的方程为:y=,联立,解得D(,)|BD|=,|OF|=, =故答案为:【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质17【答案】0 【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+sin的值,由于sin周期为8,所以S=sin+sin+sin=0故答案为:0【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查18【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键三、解答题19【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题20【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()因为所以函数的最小正周期为()由(),得因为,所以,所以所以且当时,取到最大值;当时,取到最小值21【答案】(1);(2).【解析】(1)“”为假命题,“”为真命题,与只有一个命题是真命题若为真命题,为假命题,则5分若为真命题,为假命题,则6分于是,实数的取值范围为7分考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.22【答案】 【解析】解:(1)由题意:f(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为3;由已知所以(3分)所以由f(x)=3x26x0得心x0或x2;所以当x(0,2)时,函数单调递减;当x(,0),(2,+)时,函数单调递增(6分)(2)由(1)知,函数在x(1,2)时单调递减,在x(2,3)时单调递增;所以函数在区间1,3有最小值f(2)=c4要使x1,3,f(x)14c2恒成立只需14c2c4恒成立,所以c或c1故c的取值范围是c|c或c1(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题23【答案】 【解析】解:()设F(c,0),M(c,y1),N(c,y2),则,得y1=,y2=,MN=|y1y2|=b,得a=2b,椭圆的离心率为: =()由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kxy+b=0,由于圆x2+y2=4内切于APQ,所以r=2=,得k=(b2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,yQ=yP=2,不妨设点Q在y轴左侧,可得xQ=xP=2,则=,解得b=3,则a=6,椭圆方程为:【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质24【答案】 【解析】解:(I)当a=1时,(x)=(x2+x+1)ex(x)=ex(x2+x)当(x)0时,0 x1;当(x)0时,x1或x0(x)单调减区间为(,0),(1,+),单调增区间为(0,1);(II)(x)=exx2+(2a)x(x)在x1,+)是递减的,(x)0在x1,+)恒成立,x2+(2a)x0在x1,+)恒成立,2ax在x1,+)恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)exex(x2+ax+a)=exx2+(2a)x令(x)=0,得x=0或x=2a:由表可知,(x)极大=(2a)=(4a)ea2设(a)=(4a)ea2,(a)=(3a)ea20,(a)在(,2)上是增函数,(a)(2)=23,即(4a)ea23,不存在实数a,使(x)极大值为3 第 17 页,共 17 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 生活常识


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!