浦城县高中2018-2019学年上学期高二数学12月月考试题含解析

上传人:good****022 文档编号:116502341 上传时间:2022-07-05 格式:DOC 页数:16 大小:534KB
返回 下载 相关 举报
浦城县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
第1页 / 共16页
浦城县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
第2页 / 共16页
浦城县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
第3页 / 共16页
点击查看更多>>
资源描述
浦城县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在复平面内,复数Z=+i2015对应的点位于( )A第四象限B第三象限C第二象限D第一象限2 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD33 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x34 函数存在与直线平行的切线,则实数的取值范围是( )A. B. C. D. 【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力5 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD46 已知i是虚数单位,则复数等于( )A +iB +iCiDi7 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D8 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)9 若方程x2mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是( )A(2,+)B(0,2)C(4,+)D(0,4)10下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部11如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角最大时采集效果最好,则采集效果最好时位置C到AB的距离是( )A2mB2mC4 mD6 m12已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D4二、填空题13曲线y=x+ex在点A(0,1)处的切线方程是14已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为15(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个16某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种17如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有种(用数字作答)ABCD18函数f(x)=log(x22x3)的单调递增区间为三、解答题19已知f()=,(1)化简f(); (2)若f()=2,求sincos+cos2的值20(1)计算:()0+lne+8+log62+log63;(2)已知向量=(sin,cos),=(2,1),满足,其中(,),求cos的值21(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.22在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值23(本小题满分12分)设:实数满足不等式,:函数无极值点.(1)若“”为假命题,“”为真命题,求实数的取值范围;(2)已知“”为真命题,并记为,且:,若是的必要不充分条件,求正整数的值24已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 浦城县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:复数Z=+i2015=i=i=复数对应点的坐标(),在第四象限故选:A【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查2 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题3 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题4 【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,因为,所以,故选D5 【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大6 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题7 【答案】B【解析】考点:三角函数的图象与性质8 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D9 【答案】C【解析】解:令f(x)=x2mx+3,若方程x2mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1m+30,解得:m(4,+),故选:C【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档10【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读11【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=2py(p0),将点(4,4)代入,可得p=2,所以抛物线方程为x2=4y,设C(x,y)(y6),则由A(4,6),B(4,6),可得kCA=,kCB=,tanBCA=,令t=y+6(t0),则tanBCA=t=2时,位置C对隧道底AB的张角最大,故选:A【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tanBCA,正确运用基本不等式是关键12【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A二、填空题13【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题14【答案】 【解析】解:设=,则=,的方向任意+=1,因此最大值为故答案为:【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题15【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查16【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏17【答案】27 【解析】解:若A方格填3,则排法有232=18种,若A方格填2,则排法有132=9种,根据分类计数原理,所以不同的填法有18+9=27种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题18【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)三、解答题19【答案】 【解析】解:(1)f()=tan;5(分)(2)f()=2,tan=2,6(分)sincos+cos2=10(分)20【答案】 【解析】(本小题满分12分)解析:(1)原式=1+15+2+1=0; (6分)(2)向量=(sin,cos),=(2,1),满足,sin=2cos,(9分)又sin2+cos2+=1,由解得cos2=,(11分)(,),cos= (12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力21【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式22【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到最小值【解答】解:()对于曲线C1的方程为22(cos2sin)+4=0,可化为直角坐标方程x2+y22x+4y+4=0,即圆(x1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y15=0()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小则由点到直线的距离公式可得d=4,则切线长为=故这条切线长的最小值为【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题23【答案】(1);(2).【解析】(1)“”为假命题,“”为真命题,与只有一个命题是真命题若为真命题,为假命题,则5分若为真命题,为假命题,则6分于是,实数的取值范围为7分考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.24【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩阵与变换】第 16 页,共 16 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸下载 > 其他图纸


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!