资源描述
河南科技学院新科学院2013届本科毕业论文(设计)自动洗衣机行星轮系减速器的设计学生姓名:洪 海 波 所在系别: 机械工程系 所学专业:机械设计制造及其自动化 导师姓名:逄 明 华 完成时间: 2013-4-20 摘要行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用。同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂。但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器。根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算。行星齿轮传动根据基本够件的组成情况可分为:2KH、3K、及KHV三种。若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等。N表示内啮合,W表示外啮合,G表示内外啮合公用行星轮。本文所设计的行星齿轮是2KH行星传动NGW型。关键词:减速器、齿轮强度AbstractDepartment of planetary gear reducer compared with ordinary gear reducer has the advantages of small size, light weight, high efficiency and transmission power range, and gradually widely available. While its disadvantages are: high-quality materials, complex structure, high precision manufacturing, installation more difficult, complex design calculations than the average reducer. But with the planetary transmission technology for further in-depth understanding and mastery , as well as the introduction and digestion and absorption of foreign planetary transmission technology , transmission structure and are contained way so that it continues to improve, the level of production technology is also rising , can create a better planetary gear reducer .According to the load gear strength, the geometry of the design calculations, and then the transmission ratio conditions, concentric conditions, assembly conditions, adjacent design are set, due to the use of a plurality of planetary gear drive; you must also institutions and floating amount of design calculations.The planetary gear transmission according enough basic member of the composition can be divided into: 2K-H, 3K, and the three K-H - V. The gear meshing, can be divided into: NGW type, NN, WW, the WGW type, NGWN -type and N-type. N represents the internal meshing , W the outer meshing , G represents the inner and outer engagement common planet wheel .This article is designed planetary gear 2K-H planetary transmission NGW type .Key words:Gear reducer,Gear strength目录摘要3Abstract41 绪论52 原始数据及系统组成框图72.1有关原始数据72.2系统组成框图73 减速器行星轮设计94 传动系统的方案设计105 行星齿轮传动设计115.1行星齿轮传动的传动比和效率计算115.2 行星齿轮传动的配齿计算125.3行星齿轮传动的几何尺寸和啮合参数计算135.4行星齿轮传动强度计算及校核161、行星齿轮弯曲强度计算及校核165.5行星齿轮传动的受力分析195.6行星齿轮传动的均载机构及浮动量215.7轮间载荷分布均匀的措施226 行星轮架与输出轴间齿轮传动的设计236.1轮材料及精度等级236.2按齿面接触疲劳强度设计236.3按齿根弯曲疲劳强度计算246.4主要尺寸计算256.5验算齿轮的圆周速度v257 行星轮系减速器齿轮输入输出轴的设计257.1减速器输入轴的设计257.2行星轮系减速器齿轮输出轴的设计278 结论309 设计小结3010 谢辞3111 参考文献32绪论从20世纪80年代初期洗衣机逐渐进入中国家庭,并由最开始的单缸洗衣机到双缸洗衣机,再到全自动洗衣机。随着科学技术的发展,人们对机械设备的性能要求越来越高,在齿轮传动装置方面具体表现为提高齿轮的承载能力、传动效率、减小外形尺寸、减轻质量以及增大传动比等,行星齿轮在这种背景下应运而生,并且随着齿轮传动的设计与制造技术不断发展完善。我国对行星齿轮的研究起步较晚,而且在行星齿轮产业发展出现的问题中许多都不容乐观,比如产业集中于劳动力密集型产品;技术密集型产品明显落后于发达工业国家。无锡小天鹅股份有限公司前身始建于1958年,中国第一台全自动洗衣机于1978年在小天鹅诞生,这台全自动洗衣机的问世,彻底改变了人们的洗衣方式。1995年以后,洗衣机市场一直是单缸全自动洗衣机称霸天下。然而在洗衣机的功能、品牌都不断发展的今天,仍有一部分人对双缸洗衣机情有独钟。作为第二代改良洗衣机,双缸洗衣机尽管增加了甩干功能,仍然不能节省人力洗涤结束后,必须手动甩干功能,而且甩干常常不彻底、甩干机常出故障等等。此外,双缸洗衣机的洗衣桶空间有限,像秋冬穿着的厚重衣物不好洗涤。世界上一些发达国家,如日本、德国、英国、俄罗斯以及美国等,对行星齿轮传动的应用,在生产和研究中都十分重视。由于行星齿轮减速器具有结构紧凑、体积小、承载能力大和同轴性等许多优点,行星齿轮减速器在现代的军用和民用工业中具有其广阔的应用前景。据说,欧美几乎100的家庭使用的都是滚筒洗衣机。与中国消费者偏爱的波轮式洗衣机相比,滚筒洗衣机洗衣范围广,能够洗涤羊毛、丝绸之类的高档衣物,洗好的衣物不缠绕,对衣物磨损小。滚筒洗衣机转速快,最高每分钟可达1000转,还可将水加热,衣物洗净度很高;滚筒洗衣机同时利用特有的减震、平衡系统,将噪声降到了最低;因为技术先进、做工精湛,滚筒洗衣机的使用寿命是波轮洗衣机的2倍。滚筒洗衣机有两大优点:其一是省水。波轮洗衣机要在桶中注入大量的水来带动衣物;而滚筒洗衣机是使衣物落下与水拍打,需要水量较小。其次滚筒洗衣机对衣物的磨损度要低。滚筒洗衣机洗衣时颇似南方人洗衣用棒槌敲打衣物,而波轮洗衣机是使衣物来回搅动,因此,滚筒洗衣机对衣物的磨损度更低。此外,滚筒洗衣机还是环保先锋,这或许是它们在欧美大受欢迎的另一个重要原因。滚筒洗衣机不仅能节省一半以上的水,还能大量节约洗涤剂,减少生活污水的排放。如今,滚筒洗衣机已经走入中国老百姓的家中,高端滚筒的热销充分说明滚筒洗衣机的普及已经成为趋势。全球市场上洗碗机按结构可分为台式和柜式,按用途可分为商用洗碗机和家用家则高达60%-70%。新兴国家如东南亚地区的洗碗机销量也在以每年20%的幅度增洗碗机。发达国家中家用洗碗机的普及率已达30%-40%,美国、法国、德国等国长。本文所设计的行星齿轮减速器,其特征在于采用由太阳轮、均匀排在太阳轮外周并与太阳轮外啮合的各行星轮、以及与所述各行星轮内啮合的内齿轮构成的行星轮系。1 原始数据及系统组成框图11有关原始数据课题: 一种自动洗衣机行星轮系减速器的设计 原始数据及工作条件: 使用地点:自动洗衣机减速离合器内部减速装置;传动比:=5.2输入转速:n=2600r/min输入功率:P=150w行星轮个数:=3内齿圈齿数=631.2系统组成框图图1-1 自动洗衣机的组成简图自动洗衣机的工作原理:见图1-2图1-2 洗衣机工作原理图洗涤:A制动,B放开,运动经电机、带传动、中心齿轮、行星轮、行星架、波轮脱水:A放开,B制动,运动经电机、带传动、内齿圈(脱水桶)、中心齿轮、行星架、波轮与脱水桶等速旋转。(电机输入转速)输入轴中心轮行星轮输出轴图1-3 减速器系统组成框图 2 减速器行星轮设计减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。减速器降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。降速同时降低了负载的惯量,惯量的减少为减速比的平方。一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。1) 蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。2) 谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。3) 行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。图2-1太阳轮图2-2行星轮3 传动系统的方案设计方案的分析与拟定(1)对传动方案的要求 合理的传动方案,首先应满足工作机的功能要求,还要满足工作可靠、传动精度高、体积小、结构简单、尺寸紧凑、重量轻、成本低、工艺性好、使用和维护方便等要求。(2)拟定传动方案任何一个方案,传动要满足上述所有要求是十分困难的,要统筹兼顾,满足最主要的和最基本的要求。例如图3-1所示为作者拟定的传动方案,适于在恶劣环境下长期连续工作。 图3-1 周转轮系a-中心轮;g-行星轮;b-内齿圈;H-行星架4 行星齿轮传动设计4.1行星齿轮传动的传动比和效率计算行星齿轮传动比符号及角标含义为: 1固定件、2主动件、3从动件(1)、齿轮b固定时(图11),2KH(NGW)型传动的传动比为 =1-=1+/可得 =1-=1-=1-5.2=-4.2 =/-1=63*5/21=15输出转速: =/=n/=2600/5.2=500r/min(2)、行星齿轮传动的效率计算: =1-|-/(-1)* |*=为ag啮合的损失系数,为bg啮合的损失系数,为轴承的损失系数, 为总的损失系数,一般取=0.025按=2600 r/min、=500r/min、=-21/5可得=1-|2600-500/(-4.2-1)*500|*0.025=97.98%4.2 行星齿轮传动的配齿计算(1)、传动比的要求传动比条件即 =1+/可得 1+/=63/5=21/5=4.2 =所以中心轮a和内齿轮b的齿数满足给定传动比的要求。(2)、保证中心轮、内齿轮和行星架轴线重合同轴条件为保证行星轮与两个中心轮、同时正确啮合,要求外啮合齿轮ag的中心距等于内啮合齿轮bg的中心距,即 = 称为同轴条件。对于非变位或高度变位传动,有 m/2(+)=m/2(-)得 =-/2=63-15/2=24(3)、保证多个行星轮均布装入两个中心轮的齿间装配条件想邻两个行星轮所夹的中心角=2/中心轮a相应转过角,角必须等于中心轮a转过个(整数)齿所对的中心角,即 =*2/式中2/为中心轮a转过一个齿(周节)所对的中心角。 =n/=/=1+/将和代入上式,有 2*/2/=1+/经整理后=+=(15+63)/2=24满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。(4)、保证相邻两行星轮的齿顶不相碰邻接条件在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图42所示图4-1 行星齿轮可得:l=2* l=2*2/m*(+)*sin=39/2m =d+2=17m满足邻接条件。4.3行星齿轮传动的几何尺寸和啮合参数计算按齿根弯曲强度初算齿轮模数m齿轮模数m的初算公式为 m=式中 算数系数,对于直齿轮传动=12.1; 啮合齿轮副中小齿轮的名义转矩,N*m ; =/=9549/n=95490.15/31600=0.2984N*m 使用系数,由参考文献二表67查得=1; 综合系数,由参考文献二表65查得=2; 计算弯曲强度的行星轮间载荷分布不均匀系数,由参考文献二公式65得=1.85; 小齿轮齿形系数,图622可得=3.15;, 齿轮副中小齿轮齿数,=15; 试验齿轮弯曲疲劳极限,按由参考文献二图626630选取=120所以 m=12.1 =0.658 取m=0.91)分度圆直径d=m*=0.915=13.5mm =m*=0.924=21.6mm =m*=0.963=56.7mm2) 齿顶圆直径 齿顶高:外啮合=*m=m=0.9内啮合=(-)*m=(1-7.55/)*m=0.792 =+2=13.5+1.8=15.3mm=+2=21.6+1.8=23.4mm=-2=56.7-1.584=55.116mm 3) 齿根圆直径 齿根高=(+)*m=1.25m=1.125 =-2=13.5-2.25=11.25mm=-2=21.6-2.25=19.35mm=+2=56.7+2.25=58.95mm 4)齿宽b参考三表819选取=1=*=113.5=13.5mm=*+5=13.5+5=18.5mm=13.5+(5-10)=13.5-5=8.5mm5) 中心距a 对于不变位或高变位的啮合传动,因其节圆与分度圆相重合,则啮合齿轮副的中心距为: 1、ag为外啮合齿轮副=m/2(+)=0.9/2(15+24)=17.55mm 2、bg为内啮合齿轮副 =m/2(+)=0.9/2(63-24)=17.55mm中心轮a行星轮g内齿圈b模数m0.90.90.9齿数z152463分度圆直径d13.521.656.7齿顶圆直径15.323.454.9齿根圆直径11.2519.3558.95齿宽高b18.518.58.5中心距a=17.55mm =17.55mm4.4行星齿轮传动强度计算及校核1、行星齿轮弯曲强度计算及校核(1)选择齿轮材料及精度等级中心轮a选选用45钢正火,硬度为162217HBS,选8级精度,要求齿面粗糙度1.6行星轮g、内齿圈b选用聚甲醛(一般机械结构零件,硬度大,强度、钢性、韧性等性能突出,吸水性小,尺寸稳定,可用作齿轮、凸轮、轴承材料)选8级精度,要求齿面粗糙度 =/=9549/n=95490.15/31600=0.2984N*m=298.4N*mm;(3)按齿根弯曲疲劳强度校核由参考文献三式824得出 3.2。(2)转矩如【】则校核合格。(4)齿形系数由参考文献三表812得=3.15,=2.7,=2.29;(5)应力修正系数由参考文献三表813得=1.49,=1.58,=1.74;(6)许用弯曲应力由参考文献三图824得=180MPa,=160 Map ; 由表89得=1.3 由图825得=1;由参考文献三式814可得=*/=180/1.3=138 Map =*/=160/1.3=123.077 Map=2K/b*=(21.1298.4/13.515)3.151.49=18.78 Map =138 Map=*/=18.782.71.587/3.151.74=14.62查参考文献二表611可得 =1.3所以 1.33、有关系数和接触疲劳极限(1)使用系数查参考文献二表67 选取=1(2)动载荷系数查参考文献二图66可得=1.02(3)齿向载荷分布系数对于接触情况良好的齿轮副可取=1(4)齿间载荷分配系数、由参考文献二表69查得 =1.1 =1.2(5)行星轮间载荷分配不均匀系数由参考文献二式713 得=1+0.5(-1)由参考文献二图719 得=1.5 所以 =1+0.5(-1)=1+0.5(1.5-1)=1.25仿上 =1.75(6)节点区域系数由参考文献二图69查得=2.06(7)弹性系数由参考文献二表610查得=1.605(8)重合度系数由参考文献二图610查得=0.82(9)螺旋角系数 =1(10)试验齿的接触疲劳极限由参考文献二图611图615查得 =520Mpa(11)最小安全系数、由参考文献二表6-11可得=1.5、=2(12)接触强度计算的寿命系数由参考文献二图611查得 =1.38(13)润滑油膜影响系数、由参考文献二图617、图618、图619查得=0.9、=0.952、=0.82(14)齿面工作硬化系数由参考文献二图620查得 =1.2(15)接触强度计算的尺寸系数由参考文献二图621查得 =1所以 =2.061.6050.821=2.95 =2.95=3.5 =2.95=4.32 =*=520/1.31.380.90.950.821.21=464.4所以 齿面接触校核合格4.5行星齿轮传动的受力分析在行星齿轮传动中由于其行星轮的数目通常大于1,即1,且均匀对称地分布于中心轮之间;所以在2HK型行星传动中,各基本构件(中心轮a、b和转臂H)对传动主轴上的轴承所作用的总径向力等于零。因此,为了简便起见,本设计在行星齿轮传动的受力分析图中均未绘出各构件的径向力,且用一条垂直线表示一个构件,同时用符号F代表切向力。为了分析各构件所受力的切向力F,提出如下三点:(1) 在转矩的作用下,行星齿轮传动中各构件均处于平衡状态,因此,构件间的作用力应等于反作用力。(2) 如果在某一构件上作用有三个平行力,则中间的力与两边的力的方向应相反。(3) 为了求得构件上两个平行力的比值,则应研究它们对第三个力的作用点的力矩。在2HK型行星齿轮传动中,其受力分析图是由运动的输入件开始,然后依次确定各构件上所受的作用力和转矩。对于直齿圆柱齿轮的啮合齿轮副只需绘出切向力F,如图13所示。由于在输入件中心轮a上受有个行星轮g同时施加的作用力和输入转矩的作用。当行星轮数目2时,各个行星轮上的载荷均匀,(或采用载荷分配不均匀系数进行补偿)因此,只需要分析和计算其中的一套即可。在此首先确定输入件中心轮a在每一套中(即在每个功率分流上)所承受的输入转矩为 =/=9549/n=95490.15/31600=0.2984N*m可得 =*=0.8952 N*m式中 中心轮所传递的转矩,N*m; 输入件所传递的名义功率,KW;图5-2传动简图(a)传动简图 (b)构件的受力分析按照上述提示进行受力分析计算,则可得行星轮g作用于中心轮a的切向力为 =2000/=2000/=20000.2984/13.5=44.2N而行星轮g上所受的三个切向力为中心轮a作用与行星轮g的切向力为 =-=-2000/=-44.2N 内齿轮作用于行星轮g的切向力为=-2000/=-44.2N 转臂H作用于行星轮g的切向力为=-2=-4000/=-88.4N 转臂H上所的作用力为=-2=-4000/=-88.4N 转臂H上所的力矩为 =-4000/*=-40000.8952/13.517.55=-4655.0 N*m 在内齿轮b上所受的切向力为 =-=2000/=44.2N 在内齿轮b上所受的力矩为=/2000=/=0.895221.6/13.5=1.43 N*m 式中 中心轮a的节圆直径, 内齿轮b的节圆直径, 转臂H的回转半径,根据参考文献二式(637)得 -/=1/=1/1-=1/1+P转臂H的转矩为 =-*(1+P)= -0.8952(1+4.2)=-4.655 N*m 仿上 -/=1/=1/1-=p/1+P内齿轮b所传递的转矩, =-p/1+p*=-4.2/5.2(-4.655)=3.76 N*m4.6行星齿轮传动的均载机构及浮动量行星齿轮传动具有结构紧凑、质量小、体积小、承载能力大等优点。这些是由于在其结构上采用了多个行星轮的传动方式,充分利用了同心轴齿轮之间的空间,使用了多个行星轮来分担载荷,形成功率分流,并合理地采用了内啮合传动;从而,才使其具备了上述的许多优点。4.7轮间载荷分布均匀的措施为了使行星轮间载荷分布均匀,起初,人们只是努力提高齿轮的加工精度,从而使得行星轮传动的制造和转配变得比较困难。后来通过实践采取了对行星齿轮传动的基本构件径向不加限制的专门措施和其他可进行自动调位的方法,即采用各种机械式的均载机构,以达到各行星轮间载荷分布均匀的目的。从而,有效地降低了行星齿轮传动的制造精度和较容易转配,且使行星齿轮传动输入功率能通过所有的行星轮进行传递,即可进行功率分流。在选用行星齿轮传动均载机构时,根据该机构的功用和工作情况,应对其提出如下几点要求:()载机构在结构上应组成静定系统,能较好地补偿制造和转配误差及零件的变形,且使载荷分布不均匀系数值最小。()均载机构的补偿动作要可靠、均载效果要好。为此,应使均载构件上所受力的较大,因为,作用力大才能使其动作灵敏、准确。()在均载过程中,均载构件应能以较小的自动调整位移量补偿行星齿轮传动存在的制造误差。()均载机构应制造容易,结构简单、紧凑、布置方便,不得影响到行星齿轮传动性能。均载机构本身的摩擦损失应尽量小,效率要高。()均载机构应具有一定的缓冲和减振性能;至少不应增加行星齿轮传动的振动和噪声。为了使行星轮间载荷分布均匀,有多种多样的均载方法。对于主要靠机械的方法来实现均载的系统,其结构类型可分为两种:1、静定系统该系统的均载原理是通过系统中附加的自由度来实现均载的。2、静不定系统均载机构:a、基本构件浮动的均载机构(1) 中心轮a浮动 (2)内齿轮b浮动 (3)转臂H浮动 (4)中心轮a与转臂H同时浮动 (5)中心轮a与内齿轮b同时浮动转臂H同时浮动 (6)组成静定结构的浮动b、杠杆联动均载机构本次所设计行星齿轮是静定系统,基本构件中心轮a浮动的均载机构。5行星轮架与输出轴间齿轮传动的设计已知:传递功率P=150w,齿轮轴转速n=1600r/min,传动比i=5.2,载荷平稳。使用寿命10年,单班制工作。 6.1轮材料及精度等级行星轮架内齿圈选用45钢调质,硬度为220250HBS,齿轮轴选用45钢正火,硬度为170210HBS,选用8级精度,要求齿面粗糙度3.26.3。6.2按齿面接触疲劳强度设计因两齿轮均为钢质齿轮,可应用参考文献四式1022求出值。确定有关参数与系数。1) 转矩 = =/=9549/n=95490.15/31600=0.2984N*m2) 载荷系数K查参考文献四表1011 取K=1.13)齿数和齿宽系数行星轮架内齿圈齿数取11,则齿轮轴外齿面齿数=11。因单级齿轮传动为对称布置,而齿轮齿面又为软齿面,由参考文献四表1020选取=1。4)许用接触应力 由参考文献四图1024查得 =560Mpa, =530 Mpa由参考文献四表1010查得 =1 =60nj=6016001(105240)=1.997 =/i=1.997由参考文献四图1027可得=1.05。由参考文献四式1013可得=/=1.05560/1=588 Mpa=/=1.05530/1=556.5 Mpa6.3按齿根弯曲疲劳强度计算由参考文献四式1024得出,如则校核合格。确定有关系数与参数:1)齿形系数由参考文献四表1013查得 =3.63 2)应力修正系数由参考文献四表1014查得 =1.413)许用弯曲应力由参考文献四图1025查得 =210Mpa, =190 Mpa由参考文献四表1010查得 =1.3由参考文献四图1026查得 =1由参考文献四式1014可得 =/=210/1.3=162 Mpa =/=190/1.3=146 Mpa故 m1.26=1.26=0.58=2K/b=3.631.41=27.77MPa=162 Mpa=/=27.77MPa=146 Mpa齿根弯曲强度校核合格。由参考文献四表103取标准模数m=16.4主要尺寸计算=mz=111mm=11mm=111mm=11mma=1/2m(+)=1/21(11+11)mm=11mm6.5验算齿轮的圆周速度v v=/601000=111600/601000=0.921m/s由参考文献四表1022,可知选用8级精度是合适的。7 行星轮系减速器齿轮输入输出轴的设计7.1减速器输入轴的设计1、选择轴的材料,确定许用应力由已知条件 选用45号钢,并经调质处理,由参考文献四表144查得强度极限=650MPa,再由表142得许用弯曲应力=60MPa2、按扭转强度估算轴径根据参考文献四表141 得C=118107。又由式142得 d=(118107)=5.364.86取直径=8.5mm3、确定各轴段的直径轴段1(外端)直径最少=8.5mm,考虑到轴在整个减速离合器中的安装所必须满足的条件,初定:=9.7mm, =10mm,=11mm, =11.5mm, =12mm, =15.42mm, =18mm。4、确定各轴段的长度齿轮轮廓宽度为20.5mm,为保证达到轴于行星齿轮安装的技术要求及轴在整个减速离合器中所必须满足的安装条件,初定:L=107mm, =3.3mm, =2mm, =44.2mm, =4mm, =18.5mm, =1.5mm, =16.3mm。按设计结果画出轴的结构草图:图7-1 输入轴简图5、 校核轴a、受力分析图图7-2 受力分析(a) 水平面弯矩图 (b)垂直面内的弯矩图 (c)合成弯矩图 (d)转矩图圆周力:=2298.4/13.5=44.2N 径向力:=44.2tan=16.1N法向力:=/cos=44.2/ cos=47.04Nb、作水平面内弯矩图(7-2a)。支点反力为: =/2=22.1N 弯矩为:=22.177.95/2=861.35Nmm =22.129.05/2=321 Nmmc、作垂直面内的弯矩图(7-2b),支点反力为:=/2=8.04N弯矩为:=8.0477.95/2=313.5Nmm =8.0429.05/2=116.78 Nmmd、作合成弯矩图(7-2c):=994.45 Nmm=370.6 Nmme、作转矩图(7-2d):e、作转矩图(7-2d):T=9549/n=95490.15/1600=0.8952N*m=895.2 Nmmf、求当量弯矩 =1130.23 Nmm=652.566 Nmmg、校核强度 =/W=1130.23/0.1=1130.23/0.1=6.54Mpa=/W=652.566/0.1=652.566/0.1=4.9 Mpa所以 满足=60Mpa的条件,故设计的轴有足够的强度,并有一定裕量。7.2行星轮系减速器齿轮输出轴的设计1、选择轴的材料,确定许用应力由已知条件: 齿轮轴选用45钢正火,由参考文献四表144查得强度极限=600MPa,再由表142得许用弯曲应力=55MPa2、按扭转强度估算轴径=P=0.1597.98%=0.147kw根据参考文献四表141 得C=118107。又由式142得 d=(118107)=5.344.83取直径=8.9mm3、确定各轴段的直径轴段1(外端)直径最少=8.9m考虑到轴在整个减速离合器中的安装所必须满足的条件,初定:=12mm,=11.3mm, = =12mm。4、确定各轴段的长度齿轮轮廓宽度为20.5mm,为保证达到轴于行星齿轮安装的技术要求及轴在整个减速离合器中所必须满足的安装条件,初定:L=136.5mm, =19.2mm, =1.1mm, =74.5mm, =1.5mm, =15.8mm, =1.2mm, =23.2mm。按设计结果画出轴的结构草图:见图7-3图7-3 输出轴5、校核轴:a、受力分析图 见图图7-4 受力分析图(a)水平面内弯矩图 (b)垂直面内的弯矩图 (c)合成弯矩图 (d)转矩图圆周力:=2465.5/11=84.64N径向力:=846.4tan=308.1N法向力:=/cos=846.4/ cos=90.72Nb、作水平面内弯矩图(7-4a)。支点反力为: =/2=42.32N 弯矩为:=42.3268.25/2=1444.17Nmm =423.233.05/2=699.338Nmmc、作垂直面内的弯矩图(7-4b),支点反力为:=/2=15.405N弯矩为:=154.0568.25/2=525.7 Nmm =154.0533.05/2=254.57 Nmmd、作合成弯矩图(7-4c):=1536.87 Nmm=744.23 Nmme、作转矩图(7-4d):T= -=*(1+P)= 0.8952(1+4.2)=465.5 N*mmf、求当量弯矩 =1562.04 Nmm=794.9Nmmg、校核强度 =/W=1562.04/0.1=1562.04/0.1=9.1Mpa=/W=794.9/0.1=794.9/0.1= 4.6Mpa所以 满足=55Mpa的条件,故设计的轴有足够的强度,并有一定裕量。8 结论本文是关于自动洗衣机减速离合器内部减速装置,这种减速器对于体积和重量方面要求较高,在设计过程中不仅要注意这些,同时也要在精度上下些力气,因为精度不高,在洗衣机运行中产生的震动和噪音就越大,随着人们对家电的要求逐渐提高和科技的日益发展,洗衣机是家用电器中常见的一种,人们对它的要求不仅是质量上的,对它本身的重量、体积、噪音等方面的要求也越来越高,本文设计的减速器就注重在这些方面下手,尽量减轻他的重量和缩小他的体积,同时也不忘提高齿轮间的传动精度和传动的精度,能使洗衣机在运行中做到噪音小,震动小的作用。同时由于本人能力和经验有限,在设计过程中难免会犯很多错误,也可能有许多不切实际的地方,还望各位老师在借鉴的同时,能指出当中的不足,把减速器做的更完美。9 设计小结毕业设计经过这次毕业设计,我觉得自己学到了不少东西。归纳起来,主要有以下几点: 1) 大学三年多的时间都是在学习通信理论基础知识,并未真正地去应用和实践。由于我是校学生科协的成员,平时已经掌握了一定的基础,动手能力也还可以。但是经过这次毕业设计,我接触到了更多平时没有接触到的仪器设备、元器件以及相关的使用调试经验,发现了自己很多不足之处。我还体会到了所学理论知识的重要性:知识掌握得越多,设计得就更全面、更顺利、更好。2)了解进行一项相对比较大型的科技设计所必不可少的几个阶段。毕业设计能够从理论设计和工程实践相结合、巩固基础知识与培养创新意识相结合、个人作用和集体协作相结合等方面全面的培养学生的全面素质。我经过这次系统的毕业设计,熟悉了对一项课题进行研究、设计和实验的详细过程。这些在我们在将来的工作和学习当中都会有很大的帮助。3) 学会了怎样查阅资料和利用工具书。平时课堂上所学习的知识大多比较陈旧,作为通信工程的学生,由于专业特点自己更要积极查阅当前的最新通信资料。一个人不可能什么都学过,什么都懂,因此,当你在设计过程中需要用一些不曾学过的东西时,就要去有针对性地查找资料,然后加以吸收利用,以提高自己的应用能力,而且还能增长自己见识,补充最新的专业知识。4)实践能力得到了进一步提高,在调试过程中积累了一些经验。5)毕业设计对以前学过的理论知识起到了回顾作用,并对其加以进一步的消化和巩固。6)毕业设计培养了严肃认真和实事求是的科学态度。而且培养了吃苦耐劳的精神以及相对应的工程意识,同学之间的友谊互助也充分的在毕业设计当中体现出来了。10 谢辞经过近几个月的艰苦奋战,我的毕业设计已接近尾声。在这几个月的时间里,我衷心感谢我的指导老师逄教授,在课题选定、理论指导和方案的论证上,逄老师对我精心的指导和耐心的鼓励,使我能够坚持到底,毕业设计有了圆满的结果。他渊博的知识,深邃的思想,严谨的治学风格、平易近人的处事态度和幽默风趣的话语,让我在学习知识和解决问题时感到无比的轻松和愉快。至此论文定稿之际,对田老师表示衷心的感谢!在做毕业设计期间,我还有幸得到其它老师的热心指导和同学们的大力帮助,正因为有了他们,我才能克服各种困难,顺利完成毕业设计和论文。在这里一并向他们表示感谢!最后,再次向各位领导、各位老师致以崇高的敬意和最衷心的感谢!鉴于作者的水平有限,难免存在一些错误和漏洞,望各位老师、学者不吝赐教,在此向大家表示衷心的感谢。11 参考文献1袁敏.行星齿轮减速器系列化设计的精益方法J.矿山机械. 2010年, 第8期.2胡来容、 陈启松.机械传动设计手册M.煤炭工业出版社出版.2010年3饶振纲.行星齿轮传动设计M.化学工业出版社出版.2011年.4陈立德.机械设计基础M 高等教育出版社出版.2012年.5 赵丽娟、 张双 、伍正军.基于MFC 和Pro/TOOLKIT 的NGW 型行星减速器参数化设计J.辽宁工程技术大学机械工程学院院报.2012年,第四期.6任宗义. 画法几何及机械制图M . 北京: 机械工业出版社, 2001:18-50.7濮良贵,纪名杠.机械设计M.北京: 高等教育教育出版社, 1995:112-130.8朱凤琴, 张淳. NGW 行星齿轮减速器的参数化程序设计 J . 机械传动, 2005, 第五期 : 36- 38.9尤瑞琳. 行星减速器行星架的改造设计 J . 起重运输机械, 2002年,第七期:32- 33.10沈世德. 机械原理 M . 北京: 机械工业出版社, 2005: 38- 123.11 杨龙. 大功率行星减速器行星架特性分析及结构优化 D. 中国舰船研究院. 2011年12 纪明刚.机床设计M.上海科学技术出版社. 2010年13 饶振刚.行星齿轮传动设计M.化学工业出版社.2005年14 朱冬梅.画法几何及机械制图M.高等教育出版社 2011年15贾铁钢.洗衣机行星减速器太阳轮注射模设计J模具工业.2011年,第37卷,第7期.27
展开阅读全文