资源描述
第 12 页,共 12 页苏教版小学数学六年级上册教学设计 苏教版六年级数学上册教案含反思第七课时 长方体和正方体的体积教学内容:教科书第2526页的例9、例10,以及随后的“试一试”和“练一练”,练习六第13题。教学目标:1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。教学资源:学生按小组分别准备30个左右1立方厘米的正方体。教学过程:一、导人新课1出示萝卜或橡皮泥做成的长方体。说明:这个长方体的长是3厘米、宽是2厘米、高是2厘米。提问:我们刚刚认识了体积和体积单位,你有什么办法知道这个长方体的体积是多少立方厘米?引导学生想到:关键是看这个长方体中包含多少个1立方厘米,也就是可以将它切成多少个棱长1厘米的小正方体。演示切的过程。切完后让学生数一数,明确长方体的体积是包含多少1立方厘米。2设疑:萝卜(或橡皮泥)是可以切开的。但并不是所有的长方体或正方体的物体都是可以切开的。那么又该如何去求那些物体的体积呢?揭示课题:这节课我们一起研究长方体和正方体体积的计算方法。 (板书:长方体和正方体的体积)二、教学例91、操作准备。(1)提出操作要求:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。(2)将摆出的长方体放在桌上,并编号。2观察思考。(1)提问:你能看出这些长方体的长、宽、高各是多少吗? 让学生在小组内互相说一说,并说说是怎样看出来的,然后将这些长方体的长、宽、高依次记录在表格中。(2)启发:怎样才能知道这些由1立方厘米的正方体摆成的长方体的体积?引导学生依次去数每个长方体中包含的小正方体的个数,并记录在表格中。(3)让学生在小组内互相核对填写的结果是否正确;选择一些长方体让学生说说是怎样数出它们所包含的小正方体的个数的。3分析推想。提问:观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你能从中发现什么?引导学生提出猜想:长方体的体积是它的长、宽、高的乘积。三、教学例101谈话:通过刚才的操作和讨论,我们提出了一个猜想。那么长方体的体积是不是它的长、宽、高的乘积呢?这个问题还需要进一步研究。2依次出示例10中的三个长方体,提问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?启发:看着图想一想,你能根据每个长方体的长、宽、高来思考上面的问题吗?3提出操作要求:先按自己小组的想法摆一摆,摆好后数一数,看看一共用了多少个小正方体。学生动手操作。4组织交流:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?追问:如果再给你一个长5厘米、宽4厘米、高3厘米的长方体,你能想像出怎样用1立方厘米的正方体摆出来吗?摆出这个长方体一共要用多少个1立方厘米的小正方体?四、概括公式1提问:根据刚才操作过程中的发现,你能说说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?通过交流得出公式:长方体的体积:长x宽x高2继续提问:如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?学生尝试后,交流得出:3启发:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?交流得出:正方体的体积二棱长棱长棱长进一步启发:正方体的体积公式也可以用字母来表示。但用字母表示正方体的公式时,还有一些特殊的地方,教材第26页对此作了详细的说明。请你打开课本看一看。让学生阅读后说说正方体体积的字母公式,并重点追问每个a的含义,进一步明确a的读、写方法。五、应用拓展1做“试一试”。先让学生说说长方体的长、宽、高分别是多少,正方体的棱长是多少,再让学生独立计算。交流时,注意让学生先说说长方体和正方体的体积公式,再说说分别是怎样列式的。2做“练一练”第1题。先让学生分别说说每个图形的长、宽、高或棱长,再让学生独立完成。交流时关注学生是怎样得到每个几何体的体积的。如果有学生仍旧是用数小正方体个数的方法,要引导学生与用公式计算的方法相比较,强调用公式计算更简便。3做“练一练”第2题。选择几个式子让学生说说其表示的意思,再让学生计算出每个式子的得数。4做练习六第2题。先让学生自主读题,再让学生说说为什么要从里面量车厢的长、宽、高,然后让学生列式解答。六、全课小结(略)七、课堂作业:做练习六第1、3题。教学后记:一、联系实际生活,解决实际问题。长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的,教师通过切开一个长4厘米、宽3厘米、高2厘米的长方体,看看它含有多少个1立方厘米的体积单位,引入计量体积的方法.但是在很多情况下,是不能用切开的方法来计量物体的体积的.教师采用了让学生用棱长1厘米的正方体拼摆长方体的实验,引导学生找出计算长方体体积的方法。教师考虑到学习数学是为了解决实际生活中的数学问题,要让学生认识数学知识与实际生活的关系,考虑到解决问题的实际情况,(如,不是所有物体都能切开,)怎样才能更好更快的解决问题,(如,找到计算长方体体积的公式,)从而从实践上升到理论,找到解决问题的一般规律。二、加强实际操作,发展空间观念。体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,教师特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。在教学时,教师给了学生12个1立方厘米的小正方体,让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。正是教师正确把握了本册教材的重点,发展学生的空间观念,加强实际操作。通过实际观察、制作、拆拼等活动,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。学生的动手能力也得到了提高。三、小组合作交流、培养自主学习能力。传统的教学观念阻碍了学生主动性的发挥和创造力的培养,要改变传统观念就要实现三个转变:教学目标,由以知识传授为主改为增长经验、发展能力;教学方法,由以教师为中心改为以学生为中心;课堂气氛,由以严格遵守常规改为生动活泼、主动探索。在新的教育观念的指导下,教师在本节课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。学生在活动中表现出主动参与、积极活动的热情让每个听课老师都能感受到,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,并从活动中形成了数学意识,学会了创造。第八课时 长方体和正方体体积的统一公式教学内容:第28页的练习六48题。教材简析这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积高”这一直棱柱体积的通用公式。“练一练”和练习六第48题,先直观看图计算,再比较长方体(正方体)的体积底面积高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积底面积高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。探索并掌握长方体(正方体)的体积底面积高的计算是本节课的重点。教学目标 1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的体积底面积高的计算方法,能解决与体积计算有关的一些简单实际问题。 2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。 3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。教学过程 一、观察直观图形,认识并计算长方体、正方体的底面积 (出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?根据学生的回答,教师在图中涂色呈现出底面。提问:这两个图形的底面积是哪两个面的面积?根据学生的回答,教师板书“底面积”定义。再提问:怎样计算长方体和正方体的底面积?根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。评:数学课程标准要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。 二、探索长方体(正方体)的体积底面积高的计算方法 1、提问:我们前面学习的长方体、正方体体积是如何计算的? 根据学生的回答,教师板书体积公式 2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积底面积高 3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积? 学生在小组中讨论得出结论,教师帮助学生进行相应整理4、请同学们尝试用字母表示这个公式 根据学生的回答,教师板书字母公式评:观察、思考、讨论、交流等都是数学课程标准所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积底面积高的推理过程。 三、分析、比较加深长方体(正方体)的体积底面积高的理解 1、出示“练一练”第1题 、学生独立思考完成、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系? 2、出示“练一练”第2题 独立做题,在班内共同订正评:在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积底面积高的计算方法,感受数学的魅力。 四、巩固练习、拓展应用 1、做练习六第4题 、借助实物帮助学生理解占地面积的实际含义、使学生明确“所占空间”就是储物柜的体积 、独立做题,在班内共同订正评:让学生在实际应用中,巩固用“底面积高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。 2、做练习六第5题、结合图让学生指一指这根横截面的位置、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?评:引导学生联系“长方体体积底面积高”这一方法,理解用“横截面面积长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。 3、做练习六第6题、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高、明确要求“用方程解”评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。 4、做练习六第7题、弄清题中两个问题的联系与区别、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.30.320.7(米)评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。 5、做练习六第8题、合理选择相应的信息解决实际问题、独立思考,在班内共同订正评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。 五、激励评价,问题延伸 谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并用今天学习的知识计算它的体积。评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。教学后记:本节课教学之前, 学生已经掌握了长方体体积的计算公式,于是,我在教学正方体体积的计算公式时,启发学生联想长方体和正方体的联系,引导学生根据长方体体积的计算公式,自己推导出正方体的体积公式,培养了学生的迁移能力.在引导学生推导长方体体积的另一种计算方法时,我让学生对两种方法进行比较,在比较中得出长方体体积的另一种计算方法;在引导学生推导长方体和正方体的体积公式的统一时,让学生将长方体和正方体体积的计算公式进行比较,从而推导出长方体和正方体统一的体积公式,并且使他们对柱体体积的计算方法有了一个基本的认识,为以后学习各种柱体体积计算奠定了基础.这节教学以学生活动为主,让学生亲自参与探究过程,教师的作用主要体现在创设学生亲自探究的情境,并引导学生观察、比较、讨论,使他们在交流中各抒己见.为了突出重点,对学生在探究中发现的某些结论有的放矢,最终使学生得出了“长方体的正方体体积的统一公式”.这样教学,既突出了学生的主体地位,又体现了“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的新理念.学生在这样一次次的自我发现、探索和概括中感受到了学习成功的乐趣,体验到了学习成功的快乐,提高了学生的创新意识,发展了学生的思维能力.教学实践告诉我们:书本知识是前人发现的,但是对于学生来说,那还是有待发现的新知识.因此在教学中我引导学生按一定的步骤去自觉的提出问题、研究问题、解决问题和发现新知,从而使他们在学习过程中获取成功的体验,这比教师急于下结论要好得多.学生一时不能发现的问题,教师要有足够的耐心,给孩子们充足的时间,让学生起思考,去发现.这时教师绝对不能暗示、替代.这就是“授之以鱼,不如授之以渔”.几点缺憾:1. 课堂教学略显前松后紧,控制教学的能力有待提高.2. 在评价方面缺乏教学思想和教学方法等实质性的评价.3. 面向全体,关注大多数学生做的不够.一些学生思维不够活跃,课上大胆交流的意识不强.这是教师关注的不够,应该给他们一些机会,让他们也参与近来,与大家一起体验成功的乐趣和成长的快乐.第九课时 相邻体积单位间的进率教学内容:第30页的例题11以及练一练和练习七14题。教材分析:这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。教学目标:1使学生经历1立方分米1000立方厘米、1立方米1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理2会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率3会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题教学准备:棱长为1分米的正方体以及棱长为10厘米的正方体挂图。教学过程:一、 复习导入1、教师提问:(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米(3)我们认识的体积单位有哪些?板书:立方米 立方分米 立方厘米提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】二、自主探索 验证猜测1、教学例11。(1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。(2) 提问:这两个正方体的体积是否相等?你是怎样想的?(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)(3) 用图中给出的数据分别计算它们的体积。学生分别算一算,然后在班内交流:棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)(4) 根据它们的体积相等,可以得出怎样的结论?1立方分米=1000立方厘米(板书:=)(5) 谁来说一说,为什么1立方分米=1000立方厘米?2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?学生在小组里讨论。(板书:立方米=1000立方分米)班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】三、巩固深化1、 出示书第30页的“练一练”。学生先独立完成。交流你是怎样想的。小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。【评析:突出学生的独立思考和概括能力的培养体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】2、 出示练习七第1题。学生独立完成表格。班内交流:说说长度、面积和体积单位有什么联系?而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?3、 出示练习七的第2题。学生先独立完成。交流:你是怎样想的。指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。4、 出示练习七的第3题。学生独立完成。交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。5、 出示练习七的第4题。学生独立完成后集体交流。【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】四、课堂总结。通过这节课的学习,你有什么收获?【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】教学后记:课前思考将三种类型的计量单位进行整理归类,便于学生发现相互间的联系与区别,形成知识链。建议:1、是否将练习七第一题与练一练的教学顺序交换一下?因为课始复习就是由长度单位、面积单位导入的,在新授结束后让学生完成表格,对三种类型的计量单位自己进行整理归类。2、在复习体积单位的同时,是否将容积单位间的进率,容积与体积单位间的进率也一起复习整理?将这个整理环节放在书上练习七的第3题之后。3、由于学生之前已学过很多计量单位间的单位换算,所以在学生掌握体积单位间的进率后,是否再增加一些与实际问题有关的练习?
展开阅读全文