新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

上传人:good****022 文档编号:116428580 上传时间:2022-07-05 格式:DOC 页数:17 大小:534.50KB
返回 下载 相关 举报
新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
第1页 / 共17页
新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
第2页 / 共17页
新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
第3页 / 共17页
点击查看更多>>
资源描述
新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMCMPDMP=R2 在如图55的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA1B2C3D43 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD4 全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x205 已知点M的球坐标为(1,),则它的直角坐标为( )A(1,)B(,)C(,)D(,)6 若函数f(x)=3|x1|+m的图象与x轴没有交点,则实数m的取值范围是( )Am0或m1Bm0或m1Cm1或m0Dm1或m07 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D28 已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD69 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D10设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a111已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i12已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,2二、填空题13设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)14不等式的解集为15如图是函数y=f(x)的导函数y=f(x)的图象,对此图象,有如下结论:在区间(2,1)内f(x)是增函数;在区间(1,3)内f(x)是减函数;在x=2时,f(x)取得极大值;在x=3时,f(x)取得极小值其中正确的是16对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)17等差数列中,公差,则使前项和取得最大值的自然数是_.18【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为,对任意,不等式恒成立,则的最大值为_三、解答题19(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1 20长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点(1)求证:BD1平面A1DE;(2)求证:A1D平面ABD121如图,在RtABC中,EBC=30,BEC=90,CE=1,现在分别以BE,CE为边向RtBEC外作正EBA和正CED()求线段AD的长;()比较ADC和ABC的大小22(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.23等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn24(本小题满分10分)已知集合,集合(1)若,求实数的取值范围;(2)是否存在实数,使得?若存在,求出的值;若不存在,请说明理由新密市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:P=x|x=3,M=x|x1;PM故选B2 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,第三列的第3,4,5个数分别是,又因为每一横行成等差数列,第四行的第1、3个数分别为,所以y=,第5行的第1、3个数分别为,所以z=所以x+y+z=+=1故选:A【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力3 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题4 【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”5 【答案】B【解析】解:设点M的直角坐标为(x,y,z),点M的球坐标为(1,),x=sincos=,y=sinsin=,z=cos=M的直角坐标为(,)故选:B【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,来确定,其中r为原点O与点P间的距离,为有向线段OP与z轴正向的夹角,为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影这样的三个数r,叫做点P的球面坐标,显然,这里r,的变化范围为r0,+),0,2,0,6 【答案】A【解析】解:函数f(x)=3|x1|+m的图象与x轴没有交点,m=3|x1|无解,|x1|0,03|x1|1,m0或m1,解得m0或m1故选:A7 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题8 【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用9 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.10【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A11【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B12【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法二、填空题13【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题14【答案】(0,1 【解析】解:不等式,即,求得0 x1,故答案为:(0,1【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题15【答案】 【解析】解:由 y=f(x)的图象可知,x(3,),f(x)0,函数为减函数;所以,在区间(2,1)内f(x)是增函数;不正确;在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f(x)=0,且在x=2的两侧导数值先正后负,在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,在x=3时,f(x)取得极小值不正确故答案为【点评】本题考察了函数的单调性,导数的应用,是一道基础题16【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件17【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点18【答案】【解析】试题分析:根据题意易得:,由得:在R上恒成立,等价于:,可解得:,则:,令,故的最大值为考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用三、解答题19【答案】【解析】解:(1)由题意作出可行域如下,结合图象可知,当过点A(2,1)时有最大值,故Zmax=221=3;(2)由题意作图象如下,根据距离公式,原点O到直线2x+yz=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+yz=0与椭圆+=1相切时最大,联立方程化简可得,116x2100zx+25z2400=0,故=10000z24116(25z2400)=0,故z2=116,故z=2x+y的最大值为【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用20【答案】 【解析】证明:(1)连结A1D,AD1,A1DAD1=O,连结OE,长方体ABCDA1B1C1D1中,ADD1A1是矩形,O是AD1的中点,OEBD1,OEBD1,OE平面ABD1,BD1平面ABD1,BD1平面A1DE(2)长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,ADD1A1是正方形,A1DAD1,长方体ABCDA1B1C1D1中,AB平面ADD1A1,A1DAB,又ABAD1=A,A1D平面ABD121【答案】 【解析】解:()在RtBEC中,CE=1,EBC=30,BE=,在ADE中,AE=BE=,DE=CE=1,AED=150,由余弦定理可得AD=;()ADC=ADE+60,ABC=EBC+60,问题转化为比较ADE与EBC的大小在ADE中,由正弦定理可得,sinADE=sin30,ADE30ADCABC【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键22【答案】【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线上,列出方程组,求解的值,即可求解直线的方程. 1考点:直线方程的求解.23【答案】 【解析】解:(1)设等差数列an的公差为d,a3=2,S8=22,解得,an的通项公式为an=1+(n1)=(2)bn=,Tn=2+=2=24【答案】(1);(2)不存在实数,使【解析】试题分析:(1)对集合可以分为或两种情况来讨论;(2)先假设存在实数,使,则必有,无解考点:集合基本运算.第 17 页,共 17 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!