资源描述
高一数学期末复习综合测试 数列通项与求和一、选择题1(1997上海高考)设f(n)= 1,那么f(n+1)f(n)等于 ( ) A. B. C. D. +2. 设等差数列an的公差为d,如果它的前n项和sn = n2 ,那么 ( ) A. an = 2n1 , d = 2 B. an = 2n1 , d = 2 C. an = 2n1 , d = 2 D. an = 2n1 , d = 23. (2000北京春招)已知等差数列an满足a1a2a101 = 0 ,则有 ( ) A. a1a1010 B. a2a1000 C. a3a99 = 0 D. a51 = 514. 数列an中, ,若sn = 9 ,则n等于 ( ) A. 9 B. 10 C. 99 D. 1005. 数列an满足anan-1 = an-1+(1)n (n2)且a1 = 1 ,则a5a3等于 ( ) A B. C. D . 6Sn=12+23+34+n(n+1)等于 ( )A(n+1)(n+1)2-1 B(n+1)(n+1)2-1C(n+1)(n+2)(2n+1) Dn(n-1)(2n+1)二、填空题7. 已知数列an的前n项和sn满足log2(sn+1)= n+1 ,则an = 。8数列an满足a1+2a2+(n1)an-1+nan = n(n+1)(n+2),则an = _.9. ( 2000全国高考)设数列an是首项为1的正项数列,且(n+1)an+12nan2+an+1an = 0(n = 0,1,2,3,),则它的通项公式为an = 。10、已知数列an的通项公式为an=2n-2n+1,则该数列前n项和sn_。三、解答题11数列an中,a1 = ,当n2时,有(3n22n1)an = a1+a2+an-1(1) 求an ;(2) 求数列an的前n项和为sn。12设数列an的前n项和为sn ,且a1 =1,sn+1= 4an+2 (1) 设bn = an+12an , 求证bn是等比数列; (2) 设cn = ,求证cn是等差数列; (3) 求sn = a1+a2+an-1+an。13.已知数列an的通项公式满足:n为奇数时,an=6n-5 ,n为偶数时,an=4 n ,求sn.
展开阅读全文