2020版高考数学 3年高考2年模拟 第7章 数列

上传人:艳*** 文档编号:111366296 上传时间:2022-06-20 格式:DOC 页数:152 大小:6.98MB
返回 下载 相关 举报
2020版高考数学 3年高考2年模拟 第7章 数列_第1页
第1页 / 共152页
2020版高考数学 3年高考2年模拟 第7章 数列_第2页
第2页 / 共152页
2020版高考数学 3年高考2年模拟 第7章 数列_第3页
第3页 / 共152页
点击查看更多>>
资源描述
第六章 数列第一部分 三年高考体题荟萃2020年高考题一、选择题1(天津理4)已知为等差数列,其公差为-2,且是与的等比中项,为的前项和,则的值为A-110 B-90 C90 D110【答案】D2(四川理8)数列的首项为,为等差数列且若则,则A0 B3 C8 D11【答案】B【解析】由已知知由叠加法3(四川理11)已知定义在上的函数满足,当时,设在上的最大值为,且的前项和为,则A3 B C2 D【答案】D【解析】由题意,在上,4(上海理18)设是各项为正数的无穷数列,是边长为的矩形面积(),则为等比数列的充要条件为A是等比数列。 B或是等比数列。C和均是等比数列。D和均是等比数列,且公比相同。【答案】D5(全国大纲理4)设为等差数列的前项和,若,公差,则A8 B7 C6 D5【答案】D6(江西理5) 已知数列的前n项和满足:,且=1那么=A1 B9 C10 D55【答案】A7(福建理10)已知函数f(x)=e+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:ABC一定是钝角三角形ABC可能是直角三角形ABC可能是等腰三角形ABC不可能是等腰三角形其中,正确的判断是A B C D【答案】B二、填空题8(湖南理12)设是等差数列,的前项和,且,则= 【答案】259(重庆理11)在等差数列中,则_【答案】7410(北京理11)在等比数列an中,a1=,a4=-4,则公比q=_;_。2 【答案】11(安徽理14)已知的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为_.【答案】12(湖北理13)九章算术“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。【答案】13(广东理11)等差数列前9项的和等于前4项的和若,则k=_【答案】1014(江苏13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是_【答案】三、解答题15(江苏20)设部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立 (1)设的值; (2)设的通项公式本小题考查数列的通项与前项和的关系、等差数列的基本性质等基础知识,考查考生分析探究及逻辑推理的能力,满分16分。解:(1)由题设知,当, 即, 从而 所以的值为8。 (2)由题设知,当 , 两式相减得所以当成等差数列,且也成等差数列从而当时,(*)且,即成等差数列,从而,故由(*)式知当时,设当,从而由(*)式知故从而,于是因此,对任意都成立,又由可知,解得因此,数列为等差数列,由所以数列的通项公式为16(安徽理18)在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.()求数列的通项公式;()设求数列的前项和.本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.解:(I)设构成等比数列,其中则 并利用(II)由题意和(I)中计算结果,知另一方面,利用得所以17(北京理20)若数列满足,数列为数列,记=()写出一个满足,且0的数列;()若,n=2000,证明:E数列是递增数列的充要条件是=2020;()对任意给定的整数n(n2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。 解:()0,1,2,1,0是一具满足条件的E数列A5。(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)()必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(20001)1=2020.充分性,由于a2000a10001,a2000a10001a2a11所以a2000a19999,即a2000a1+1999.又因为a1=12,a2000=2020,所以a2000=a1+1999.故是递增数列.综上,结论得证。()令因为所以因为所以为偶数,所以要使为偶数,即4整除.当时,有当的项满足,当不能被4整除,此时不存在E数列An,使得18(福建理16) 已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。 解:(I)由解得所以(II)由(I)可知因为函数的最大值为3,所以A=3。因为当时取得最大值,所以又所以函数的解析式为19(广东理20) 设b0,数列满足a1=b,(1)求数列的通项公式;(2)证明:对于一切正整数n,解: (1)由令,当当时,当 (2)当时,(欲证),当综上所述20(湖北理19)已知数列的前项和为,且满足:,N*,()求数列的通项公式;()若存在N*,使得,成等差数列,是判断:对于任意的N*,且,是否成等差数列,并证明你的结论本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想。(满分13分) 解:(I)由已知可得,两式相减可得 即 又所以r=0时, 数列为:a,0,0,; 当时,由已知(), 于是由可得, 成等比数列, , 综上,数列的通项公式为 (II)对于任意的,且成等差数列,证明如下: 当r=0时,由(I)知, 对于任意的,且成等差数列, 当,时, 若存在,使得成等差数列, 则, 由(I)知,的公比,于是 对于任意的,且 成等差数列, 综上,对于任意的,且成等差数列。21(辽宁理17) 已知等差数列an满足a2=0,a6+a8=-10(I)求数列an的通项公式;(II)求数列的前n项和解: (I)设等差数列的公差为d,由已知条件可得解得故数列的通项公式为 5分 (II)设数列,即,所以,当时, 所以 综上,数列 12分22(全国大纲理20) 设数列满足且()求的通项公式;()设解: (I)由题设 即是公差为1的等差数列。 又 所以 (II)由(I)得 ,8分12分23(全国新课标理17) 已知等比数列的各项均为正数,且(I)求数列的通项公式(II)设,求数列的前n项和解:()设数列an的公比为q,由得所以由条件可知c0,故由得,所以故数列an的通项式为an=()故所以数列的前n项和为24(山东理20) 等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列第一列第二列第三列第一行3210第二行6414第三行9818()求数列的通项公式;()若数列满足:,求数列的前n项和解:(I)当时,不合题意;当时,当且仅当时,符合题意;当时,不合题意。因此所以公式q=3,故 (II)因为所以 所以当n为偶数时,当n为奇数时,综上所述,25(上海理22) 已知数列和的通项公式分别为,(),将集合中的元素从小到大依次排列,构成数列。(1)求;(2)求证:在数列中但不在数列中的项恰为;(3)求数列的通项公式。解: ; 任意,设,则,即 假设(矛盾), 在数列中但不在数列中的项恰为。 , 当时,依次有, 。26(四川理20) 设为非零实数,(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和解析:(1)因为为常数,所以是以为首项,为公比的等比数列。(2)(2)(1)27(天津理20) 已知数列与满足:, ,且()求的值;()设,证明:是等比数列;(III)设证明:本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分. (I)解:由 可得又(II)证明:对任意,得将代入,可得即又因此是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意28(浙江理19)已知公差不为0的等差数列的首项为a(),设数列的前n项和为,且,成等比数列(1)求数列的通项公式及(2)记,当时,试比较与的大小本题主要考查等差数列、等比数列、求和公式、不等式等基础知识,同时考查分类讨论思想。满分14分。 (I)解:设等差数列的公差为d,由得因为,所以所以(II)解:因为,所以因为,所以当,即所以,当当29(重庆理21) 设实数数列的前n项和,满足 (I)若成等比数列,求和; (II)求证:对 (I)解:由题意,由S2是等比中项知由解得 (II)证法一:由题设条件有故从而对有 因,由得要证,由只要证即证此式明显成立.因此最后证若不然又因矛盾.因此证法二:由题设知,故方程(可能相同).因此判别式又由因此,解得因此由,得因此2020年高考题一、选择题1.(2020浙江理)设为等比数列的前项和,则(A)11 (B)5 (C) (D)解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题2.(2020全国卷2理)如果等差数列中,那么(A)14 (B)21 (C)28 (D)35【答案】C 【命题意图】本试题主要考查等差数列的基本公式和性质.【解析】3.(2020辽宁文)设为等比数列的前项和,已知,则公比(A)3 (B)4 (C)5 (D)6【答案】 B解析:选B. 两式相减得, ,.4.(2020辽宁理)设an是有正数组成的等比数列,为其前n项和。已知a2a4=1, ,则(A) (B) (C) (D) 【答案】B【命题立意】本题考查了等比数列的通项公式与前n项和公式,考查了同学们解决问题的能力。【解析】由a2a4=1可得,因此,又因为,联力两式有,所以q=,所以,故选B。5.(2020全国卷2文)如果等差数列中,+=12,那么+=(A)14 (B) 21 (C) 28 (D) 35【答案】C【解析】本题考查了数列的基础知识。 , 6.(2020安徽文)设数列的前n项和,则的值为(A) 15 (B) 16 (C) 49 (D)64【答案】 A【解析】.【方法技巧】直接根据即可得出结论.7.(2020浙江文)设为等比数列的前n项和,则(A)-11 (B)-8(C)5(D)11解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式8.(2020重庆理)在等比数列中, ,则公比q的值为A. 2 B. 3 C. 4 D. 8 【答案】A解析: 9.(2020广东理)已知为等比数列,Sn是它的前n项和。若, 且与2的等差中项为,则=A35 B.33 C.31 D.29【答案】C解析:设的公比为,则由等比数列的性质知,即。由与2的等差中项为知,即 ,即,即10.(2020广东文)11.(2020山东理)12.(2020重庆文)(2)在等差数列中,则的值为(A)5 (B)6(C)8 (D)10【答案】 A解析:由角标性质得,所以=513.(2020江西理)5.等比数列中,=4,函数,则( )A B. C. D. 【答案】C【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x项均取0,则只与函数的一次项有关;得:。14.(2020江西理)( )A. B. C. 2 D. 不存在【答案】B【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。15.(2020北京理)在等比数列中,公比.若,则m=(A)9 (B)10 (C)11 (D)12【答案】C16.(2020四川理)已知数列的首项,其前项的和为,且,则(A)0 (B) (C) 1 (D)2解析:由,且作差得an22an1又S22S1a1,即a2a12a1a1 a22a1故an是公比为2的等比数列Sna12a122a12n1a1(2n1)a1则【答案】B17.(2020天津理)(6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为(A)或5 (B)或5 (C) (D)【答案】C【解析】本题主要考查等比数列前n项和公式及等比数列的性质,属于中等题。显然q1,所以,所以是首项为1,公比为的等比数列, 前5项和.【温馨提示】在进行等比数列运算时要注意约分,降低幂的次数,同时也要注意基本量法的应用。18.(2020福建理)3设等差数列的前n项和为,若,则当取最小值时,n等于A6 B7 C8 D9【答案】A【解析】设该数列的公差为,则,解得,所以,所以当时,取最小值。【命题意图】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力。19.(2020全国卷1文)(4)已知各项均为正数的等比数列,=5,=10,则=(A) (B) 7 (C) 6 (D) 【答案】A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想. 【解析】由等比数列的性质知,10,所以,所以20.(2020湖北文)7.已知等比数列中,各项都是正数,且,成等差数列,则A.B. C. D21.(2020安徽理)10、设是任意等比数列,它的前项和,前项和与前项和分别为,则下列等式中恒成立的是A、B、C、D、【答案】 D【分析】取等比数列,令得代入验算,只有选项D满足。【方法技巧】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.本题也可以首项、公比即项数n表示代入验证得结论.22.(2020湖北理数)如图,在半径为r 的园内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设为前n个圆的面积之和,则= A 2 B. C.4 D.6二、填空题23.(2020辽宁文)设为等差数列的前项和,若,则 。解析:填15. ,解得,24.(2020福建理)在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 【答案】【解析】由题意知,解得,所以通项。【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。25.(2020江苏卷)函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_解析:考查函数的切线方程、数列的通项。在点(ak,ak2)处的切线方程为:当时,解得,所以。三、解答题26.(2020上海文)(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分。已知数列的前项和为,且,(1)证明:是等比数列;(2)求数列的通项公式,并求出使得成立的最小正整数.解析:(1) 当n=1时,a1=-14;当n2时,an=Sn-Sn-1=-5an+5an-1+1,所以,又a1-1=-150,所以数列an-1是等比数列;(2) 由(1)知:,得,从而(nN*);由Sn+1Sn,得,最小正整数n=1527.(2020陕西文)16.(本小题满分12分)已知an是公差不为零的等差数列,a11,且a1,a3,a9成等比数列.()求数列an的通项;()求数列2an的前n项和Sn.解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sm=2+22+23+2n=2n+1-2.28.(2020全国卷2文)(本小题满分12分)已知是各项均为正数的等比数列,且,()求的通项公式;()设,求数列的前项和。【解析】本题考查了数列通项、前项和及方程与方程组的基础知识。(1)设出公比根据条件列出关于与的方程求得与,可求得数列的通项公式。(2)由(1)中求得数列通项公式,可求出BN的通项公式,由其通项公式化可知其和可分成两个等比数列分别求和即可求得。29.(2020江西理)22. (本小题满分14分)证明以下命题:(1) 对任一正整a,都存在整数b,c(bc),使得成等差数列。(2) 存在无穷多个互不相似的三角形,其边长为正整数且成等差数列。【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。 (1)考虑到结构要证,;类似勾股数进行拼凑。证明:考虑到结构特征,取特值满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。证明:当成等差数列,则,分解得:选取关于n的一个多项式,做两种途径的分解对比目标式,构造,由第一问结论得,等差数列成立,考察三角形边长关系,可构成三角形的三边。下证互不相似。任取正整数m,n,若m,相似:则三边对应成比例, 由比例的性质得:,与约定不同的值矛盾,故互不相似。30.(2020安徽文)(21)(本小题满分13分)设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.()证明:为等比数列;()设,求数列的前项和. 【命题意图】本题考查等比列的基本知识,利用错位相减法求和等基本方法,考察抽象概括能力以及推理论证能力.【解题指导】(1)求直线倾斜角的正弦,设的圆心为,得,同理得,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即中与的关系,证明为等比数列;(2)利用(1)的结论求的通项公式,代入数列,然后用错位相减法求和.【方法技巧】对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项与之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和乘以公比,然后错位相减解决.31.(2020重庆文)(16)(本小题满分13分,()小问6分,()小问7分. )已知是首项为19,公差为-2的等差数列,为的前项和.()求通项及;()设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.32.(2020浙江文)(19)(本题满分14分)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足+15=0。()若=5,求及a1;()求d的取值范围。33.(2020北京文)(16)(本小题共13分)已知为等差数列,且,。()求的通项公式;()若等差数列满足,求的前n项和公式解:()设等差数列的公差。 因为 所以 解得所以 ()设等比数列的公比为 因为所以 即=3所以的前项和公式为34.(2020四川理)(21)(本小题满分12分)已知数列an满足a10,a22,且对任意m、nN*都有a2m1a2n12amn12(mn)2()求a3,a5;()设bna2n1a2n1(nN*),证明:bn是等差数列;()设cn(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn.本小题主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.解:(1)由题意,零m2,n1,可得a32a2a126 再令m3,n1,可得a52a3a18202分(2)当nN *时,由已知(以n2代替m)可得a2n3a2n12a2n18于是a2(n1)1a2(n1)1(a2n1a2n1)8即 bn1bn8所以bn是公差为8的等差数列5分(3)由(1)(2)解答可知bn是首项为b1a3a16,公差为8的等差数列则bn8n2,即a2n+=1a2n18n2另由已知(令m1)可得an-(n1)2.那么an1an2n1 2n1 2n于是cn2nqn1.当q1时,Sn2462nn(n1)当q1时,Sn2q04q16q22nqn1.两边同乘以q,可得 qSn2q14q26q32nqn.上述两式相减得 (1q)Sn2(1qq2qn1)2nqn 22nqn 2所以Sn2综上所述,Sn12分35.(2020全国卷1理)(22)(本小题满分12分)(注意:在试题卷上作答无效)已知数列中, .()设,求数列的通项公式;()求使不等式成立的的取值范围 .36.(2020山东理)(18)(本小题满分12分)已知等差数列满足:,的前n项和为()求及;()令bn=(nN*),求数列的前n项和【解析】()设等差数列的公差为d,因为,所以有,解得,所以;=。()由()知,所以bn=,所以=,即数列的前n项和=。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。37.(2020湖南文)20.(本小题满分13分)给出下面的数表序列:其中表n(n=1,2,3 )有n行,第1行的n个数是1,3,5,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和。(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n3)(不要求证明); (II)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为 求和: 38.(2020全国卷2理)(18)(本小题满分12分)已知数列的前项和()求;()证明:【命题意图】本试题主要考查数列基本公式的运用,数列极限和数列不等式的证明,考查考生运用所学知识解决问题的能力. 【参考答案】【点评】2020年高考数学全国I、这两套试卷都将数列题前置,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式,具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用,也可看出命题人在有意识降低难度和求变的良苦用心.估计以后的高考,对数列的考查主要涉及数列的基本公式、基本性质、递推数列、数列求和、数列极限、简单的数列不等式证明等,这种考查方式还要持续.39.(2020北京理)(20)(本小题共13分)已知集合对于,定义A与B的差为A与B之间的距离为()证明:,且;()证明:三个数中至少有一个是偶数() 设P,P中有m(m2)个元素,记P中所有两元素间距离的平均值为(P). 证明:(P).(考生务必将答案答在答题卡上,在试卷上作答无效)证明:(I)设, 因为,所以, 从而 又由题意知,.当时,; 当时,所以(II)设, ,. 记,由(I)可知 所以中1的个数为,的1的个数为。 设是使成立的的个数,则 由此可知,三个数不可能都是奇数, 即,三个数中至少有一个是偶数。(III),其中表示中所有两个元素间距离的总和,设种所有元素的第个位置的数字中共有个1,个0则=由于所以从而40.(2020天津文)(22)(本小题满分14分)在数列中,=0,且对任意k,成等差数列,其公差为2k.()证明成等比数列;()求数列的通项公式;()记,证明.【解析】本小题主要考查等差数列的定义及前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法,满分14分。(I)证明:由题设可知,。从而,所以,成等比数列。(II)解:由题设可得所以 .由,得 ,从而.所以数列的通项公式为或写为,。(III)证明:由(II)可知,以下分两种情况进行讨论:(1) 当n为偶数时,设n=2m若,则,若,则 .所以,从而(2) 当n为奇数时,设。所以,从而综合(1)和(2)可知,对任意有41.(2020天津理)(22)(本小题满分14分)在数列中,且对任意.,成等差数列,其公差为。()若=,证明,成等比数列()()若对任意,成等比数列,其公比为。【解析】本小题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法。满分14分。()证明:由题设,可得。所以=2k(k+1)由=0,得于是。所以成等比数列。()证法一:(i)证明:由成等差数列,及成等比数列,得当1时,可知1,k从而所以是等差数列,公差为1。()证明:,可得,从而=1.由()有所以因此,以下分两种情况进行讨论:(1) 当n为偶数时,设n=2m()若m=1,则.若m2,则+所以(2)当n为奇数时,设n=2m+1()所以从而综合(1)(2)可知,对任意,有证法二:(i)证明:由题设,可得所以由可知。可得,所以是等差数列,公差为1。(ii)证明:因为所以。所以,从而,。于是,由(i)可知所以是公差为1的等差数列。由等差数列的通项公式可得= ,故。从而。所以,由,可得。于是,由(i)可知以下同证法一。42.(2020湖南理)21(本小题满分13分)数列中,是函数的极小值点()当a=0时,求通项; ()是否存在a,使数列是等比数列?若存在,求a的取值范围;若不存在,请说明理由。43.(2020江苏卷)19、(本小题满分16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。(1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。解析 本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。满分16分。(1)由题意知:, ,化简,得:,当时,适合情形。故所求(2)(方法一), 恒成立。 又,故,即的最大值为。(方法二)由及,得,。于是,对满足题设的,有。所以的最大值。另一方面,任取实数。设为偶数,令,则符合条件,且。于是,只要,即当时,。所以满足条件的,从而。因此的最大值为。2020年高考题一、选择题1.(2020年广东卷文)已知等比数列的公比为正数,且=2,=1,则= A. B. C. D.2 【答案】B【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B2.(2020安徽卷文)已知为等差数列,则等于A. -1 B. 1 C. 3 D.7【解析】即同理可得公差.选B。【答案】B3.(2020江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 A.18 B.24 C.60 D.90 【答案】C【解析】由得得,再由得 则,所以,.故选C4.(2020湖南卷文)设是等差数列的前n项和,已知,则等于( )A13 B35 C49 D63 【解析】故选C.或由, 所以故选C.5.(2020福建卷理)等差数列的前n项和为,且 =6,=4, 则公差d等于A1 B C.- 2 D 3【答案】:C解析且.故选C 6.(2020辽宁卷文)已知为等差数列,且21, 0,则公差dA.2 B. C. D.2【解析】a72a4a34d2(a3d)2d1 d【答案】B7.(2020四川卷文)等差数列的公差不为零,首项1,是和的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190【答案】B【解析】设公差为,则.0,解得2,1008.(2020宁夏海南卷文)等差数列的前n项和为,已知,,则A.38 B.20 C.10 D.9 【答案】C【解析】因为是等差数列,所以,由,得:20,所以,2,又,即38,即(2m1)238,解得m10,故选.C。9.(2020重庆卷文)设是公差不为0的等差数列,且成等比数列,则的前项和=( ) A B CD【答案】A【解析】设数列的公差为,则根据题意得,解得或(舍去),所以数列的前项和10.(2020广东卷理)已知等比数列满足,且,则当时, A. B. C. D. 【解析】由得,则, ,选C. 【答案】 C11.(2020辽宁卷理)设等比数列 的前n 项和为 ,若 =3 ,则 = A.2 B. C. D.3【解析】设公比为q ,则1q33 q32 于是 【答案】B12.(2020宁夏海南卷理)等比数列的前n项和为,且4,2,成等差数列。若=1,则=( )A.7 B.8 C.15 D.16【解析】4,2,成等差数列,,选C.【答案】 C13.(2020湖北卷文)设记不超过的最大整数为,令=-,则,,A.是等差数列但不是等比数列 B.是等比数列但不是等差数列C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列【答案】B【解析】可分别求得,.则等比数列性质易得三者构成等比数列.14.(2020湖北卷文)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如: 他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16这样的数成为正方形数。下列数中及时三角形数又是正方形数的是A.289 B.1024 C.1225 D.1378【答案】C【解析】由图形可得三角形数构成的数列通项,同理可得正方形数构成的数列通项,则由可排除A、D,又由知必为奇数,故选C.15.(2020安徽卷理)已知为等差数列,+=105,=99,以表示的前项和,则使得达到最大值的是 A.21 B.20 C.19 D.18 【答案】 B【解析】由+=105得即,由=99得即 ,由得,选B16.(2020江西卷理)数列的通项,其前项和为,则为A B C D【答案】 A【解析】由于以3 为周期,故故选A17.(2020四川卷文)等差数列的公差不为零,首项1,是和的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 【答案】B【解析】设公差为,则.0,解得2,10二、填空题18.(2020全国卷理) 设等差数列的前项和为,若,则= 答案 24解析 是等差数列,由,得. 19.(2020浙江理)设等比数列的公比,前项和为,则 答案:15解析 对于20.(2020北京文)若数列满足:,则 ;前8项的和 .(用数字作答)答案 225解析 本题主要考查简单的递推数列以及数列的求和问题. 属于基础知识、基本运算的考查.,易知,应填255.21.(2020全国卷文)设等比数列的前n项和为。若,则= 答案:3解析:本题考查等比数列的性质及求和运算,由得q3=3故a4=a1q3=322.(2020全国卷理)设等差数列的前项和为,若则 解析 为等差数列,答案 923.(2020辽宁卷理)等差数列的前项和为,且则 解析 Snna1n(n1)d S55a110d,S33a13d 6S55S330a160d(15a115d)15a145d15(a13d)15a4答案 24.(2020浙江理)(14)设,将的最小值记为,则其中=_ .解析:本题主要考察了合情推理,利用归纳和类比进行简单的推理,属容易题25.(2020陕西文)11.观察下列等式:1323(12)2,132333(123)2,13233343(1234)2,根据上述规律,第四个等式为1323334353(12345)2(或152).解析:第i个等式左边为1到i+1的立方和,右边为1到i+1和的完全平方所以第四个等式为1323334353(12345)2(或152).26.(2020辽宁理)(16)已知数列满足则的最小值为_.【答案】【命题立意】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力。【解析】an=(an-an-1)+(an-1-an-2)+(a2-a1)+a1=21+2+(n-1)+33=33+n2-n所以设,令,则在上是单调递增,在上是递减的,因为nN+,所以当n=5或6时有最小值。又因为,所以,的最小值为27.(2020浙江文)(14)在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是 。答案:28.(2020天津文)(15)设an是等比数列,公比,Sn为an的前n项和。记设为数列的最大项,则= 。【答案】4【解析】本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题。因为8,当且仅当=4,即n=4时取等号,所以当n0=4时Tn有最大值。【温馨提示】本题的实质是求Tn取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.29.(2020湖南理)若数列满足:对任意的,只有有限个正整数使得成立,记这样的的个数为,则得到一个新数列例如,若数列是,则数列是已知对任意的,则 , 30.(2020浙江文)设等比数列的公比,前项和为,则 【命题意图】此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前项和的知识联系答案 15解析 对于 31.(2020浙江文)设等差数列的前项和为,则,成等差数列类比以上结论有:设等比数列的前项积为,则, , ,成等比数列【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力答案: 解析 对于等比数列,通过类比,有等比数列的前项积为,则,成等比数列32.(2020北京理)已知数列满足:则_;=_.答案 1,0解析 本题主要考查周期数列等基础知识.属于创新题型.依题意,得,. 应填1,0.33.(2020江苏卷)设是公比为的等比数列,令,若数列有连续四项在集合中,则= . 答案 -9解析 考查等价转化能力和分析问题的能力。等比数列的通项。 有连续四项在集合,四项成等比数列,公比为,= -934.(2020山东卷文)在等差数列中,则.解析 设等差数列的公差为,则由已知得解得,所以. 答案: 13.【命题立意】:本题考查等差数列的通项公式以及基本计算.35.(2020湖北卷理)已知数列满足:(m为正整数),若,则m所有可能的取值为_。 答案 4 5 32解析 (1)若为偶数,则为偶, 故当仍为偶数时, 故当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=536.(2020宁夏海南卷理)等差数列前n项和为。已知+-=0,=38,则m=_解析由+-=0得到。答案 1037.(2020陕西卷文)设等差数列的前n项和为,若,则 . 解析:由可得的公差d=2,首项=2,故易得2n.答案:2n38.(2020陕西卷理)设等差数列的前n项和为,若,则 .答案:139.(2020宁夏海南卷文)等比数列的公比, 已知=1,则的前4项和= 解析 由得:,即,解得:q2,又=1,所以,。答案 40.(2020湖南卷理)将正ABC分割成(2,nN)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,f(n)= (n+1)(n+2) 答案 解析 当n=3时,如图所示分别设各顶点的数用小写字母表示,即由条件知 即进一步可求得。由上知中有三个数,中 有6个数,中共有10个数相加 ,中有15个数相加.,若中有个数相加,可得中有个数相加,且由可得所以=41.(2020重庆卷理)设,则数列的通项公式= 解析 由条件得且所以数列是首项为4,公比为2的等比数列,则答案 2n+1三、解答题42.(2020浙江文)设为数列的前项和,其中是常数 (I) 求及; (II)若对于任意的,成等比数列,求的值解()当,() 经验,()式成立, ()成等比数列,即,整理得:,对任意的成立, 43.(2020北京文)设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.()若,求;()若,求数列的前2m项和公式;()是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.【解析】本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、分类讨论等数学思想方法本题是数列与不等式综合的较难层次题.解()由题意,得,解,得. 成立的所有n中的最小整数为7,即.()由题意,得,对于正整数,由,得.根据的定义可知当时,;当时,.()假设存在p和q满足条件,由不等式及得.,根据的定义可知,对于任意的正整数m 都有,即对任意的正整数m都成立. 当(或)时,得(或), 这与上述结论矛盾!当,即时,得,解得. 存在p和q,使得;p和q的取值范围分别是,.44.(2020山东卷文)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!