2018年高考数学 黄金100题系列 第37题 三角形中的不等问 理

上传人:a**** 文档编号:111146766 上传时间:2022-06-20 格式:DOC 页数:12 大小:576.50KB
返回 下载 相关 举报
2018年高考数学 黄金100题系列 第37题 三角形中的不等问 理_第1页
第1页 / 共12页
2018年高考数学 黄金100题系列 第37题 三角形中的不等问 理_第2页
第2页 / 共12页
2018年高考数学 黄金100题系列 第37题 三角形中的不等问 理_第3页
第3页 / 共12页
点击查看更多>>
资源描述
第 37题 三角形中的不等问题I题源探究黄金母题【例1】海中一小岛,周围内有暗礁,海轮由西向东航行,望见该岛在北偏东70,航行以后,望见这岛在北偏东60,如果这艘轮船不改变航向继续前进,有没有触礁的危险?【解析】根据题意作出如下图,其中设为岛所在位置,是该轮船航行前后的位置,过作于,根据题意知,在ABC中,=10,CBD=30,由正弦定理得,=157560,787838,没有触礁的危险答:没有触礁的危险精彩解读【试题来源】人教版A版必修5第24页复习参考题A组第2题【母题评析】此题考查利用正余弦定理解与三角形有关的综合问题,是常考题型【思路方法】根据题意画出图形,为岛所在位置,是该轮船航行前后的位置,过作于,根据题意知,在ABC中,要判断是否触礁,即需要计算C点到直线AB的距离CD,在ABC中利用正弦定理计算出BC,在通过解直角三角形即可求出CDII考场精彩真题回放【例2】【2021年高考北京理数】在ABC中,1求 的大小;2求 的最大值【解析】1由余弦定理及题设得,又,;2由1知,因为,所以当时,取得最大值【例3】【2021高考山东理数】在ABC中,角A,B,C的对边分别为a,b,c, 证明:a+b=2c;求cosC的最小值【解析】由题意知,化简得,即因为,所以从而由正弦定理得由知,当且仅当时,等号成立故 的最小值为【命题意图】此题主要考查利用正余弦定理和三角公式求与三角形有关的三角式的范围问题,考查运算求解能力,是中档题【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等,考查学生利用正余弦定理及相关知识解决与三角形有关的综合问题【难点中心】解答此类问题的关键是熟练学三角恒等变形能力,形成解题的模式和套路【例4】【2021高考湖南,理17】设的内角,的对边分别为,且为钝角1证明:;2求的取值范围【解析】1由及正弦定理,得,即,又为钝角,因此,故,即2由1知,于是=,因此,由此可知的取值范围是III理论根底解题原理考点一 三角形中的不等关系1任意两边之和大于第三边,任意两边之差小于第三边;2任一角都大于00而小于1800,任意两角之和也是大于00而小于1800;33设角A是一三角形的内角,那么;4在锐角三角形中,任意两角之和也是大于900而小于1800;5在同一三角形中大边对大角,大角对大边考点二 与三角形有关的综合问题类型常以三角形中的不等和最值问题为载体,考查运用三角变换、正余弦定理、根本不等式、平面向量等知识和方法求取值范围或值域或求值,要求学生有较强的逻辑思维能力、三角恒等变形能力以及准确的计算能力对这类问题要认证读题,利用相关知识将条件转化为三角形的边角条件,利用正余弦定理,将问题转化为三角形的纯边或纯角的函数问题,再利用根本不等式或函数求值域的方法处理之IV题型攻略深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,一般中档题,考查综合运用正余弦定理及相关知识与方法解综合问题的能力【技能方法】1与平面向量结合的三角形问题,常利用平面向量的知识将向量条件或问题化为三角形的边角条件或问题,再利用正余弦定理化为纯边或纯角条件或问题求解,如在中,由2与数列结合的三角形问题,常利用数列的相关知识将条件或问题转化为三角形的边角条件或问题,再利用正余弦定理化为纯边或纯角条件或问题求解3三角形中的取值范围问题或最值问题,常常利用正余弦定理化成纯边问题,利用根本不等式或重要求最值,或者化成纯角问题,利用三角公式化成一个角的三角函数,利用三角函数的图像与性质求最值,要注意角的范围【易错指导】在求与三角性有关的最值范围问题时,常先利用正余弦定理将其化为角的三角函数,再利用三角形内角和定理消去角的个数,结合题中的条件和消去角的范围确定留下角的范围,利用三角函数图像与性质求解,最容易出现的错误没有进一步确定留下角的范围;在求最值时没有结合三角函数图像求最值而是直接代角范围的端点值,应尽量防止之V举一反三触类旁通考向1 关于三角形边的代数式的范围最值问题【例5】【2021黑龙江哈尔滨九中二模】设函数1求的最大值,并写出使取最大值时的集合;2中,角的边分别为,假设,求的最小值【答案】12, ;21试题解析:1 的最大值为2要使取最大值, ,故的集合为2,即化简得,只有在中,由余弦定理, 由知,即,当时取最小值1,【例6】【2021山西怀仁县一中高二上期开学考】在中,角、的对边分别为、,1求;2假设,求的取值范围2由1得:,其中,【方法总结】对于三角形中边的代数式的最值问题,假设是三角形中最大小边长问题,先根据角判定三边的大小关系,再用正弦定理或余弦定理求解;假设是关于两边以上的齐次代数式,假设能求得两边的和或积为常数,可以利用根本不等式求最值,也可以利用正弦定理化为对应角的三角函数式的最值,常用题中条件和三角形内角和定理化为一个角的三角式函数最值问题,再利用三角公式化为一个角的三角函数在某个范围上的最值问题,再利用三角函数图像图像与性质求最值,注意要根据消去角的范围确定留下角的范围【跟踪练习】【2021湖北华中师大一附中高三五月适应性考试】在中,假设最长为,那么最短边的长为 【答案】考向2 关于三角形角的三角函数式的范围最值问题【例7】【2021贵州遵义一联】在中,角、的对边分别为、,且1求角的大小;2假设的面积,求的值【解析】1由,得,即,解得或舍去,因为2由,得由余弦定理,得由正弦定理,得 【方法总结】对于三角形中角的三角函数式的最值问题,假设是三角形某个角余弦的最值问题,常用余弦定理化为边,利用根本不等式求最值;假设是含有多个角三角函数式的最值问题,常用题中条件和三角形内角和定理化为一个角的三角式函数最值问题,再利用三角公式化为一个角的三角函数在某个范围上的最值问题,再利用三角函数图像图像与性质求最值,注意要根据消去角的范围确定留下角的范围【跟踪练习】【2021重庆一中高二下学期期中】在中,那么的最小值为 A B C D【答案】D【解析】由有,通分化简有,由正弦定理有,由余弦定理有,化简得,代入有,所以的最小值为,选D考向3 关于三角形面积的最值问题【例8】【2021河北石家庄二中三模】如图,在 中,角 的对边分别为 , 1求角 的大小;2假设 为外一点, ,求四边形面积的最大值【答案】12试题解析:解:1在 中, 有 , ,那么 ,即 ,那么 2在 中, ,又 ,那么为等腰直角三角形, ,又 , ,当 时,四边形 的面积最大值,最大值为【跟踪练习】1【2021江西质检】如下图,在平面四边形中,那么四边形的面积的最大值是 【答案】【方法总结】对三角形中面积的最值问题,假设一角为定值,常用余弦定理及根本不等式求出这个角两边积的最值,即可利用面积公式求出面积的最值,也可以利用正弦定理化为对角的三角函数式的最值问题,常用题中条件和三角形内角和定理化为一个角的三角式函数最值问题,再利用三角公式化为一个角的三角函数在某个范围上的最值问题,再利用三角函数图像图像与性质求最值,注意要根据消去角的范围确定留下角的范围;假设邻边的积为定值,先求出夹角的正弦的取值范围,即可求出三角形面积的最值 2【2021云南玉溪三模】的内角的对边分别为,且1求;2假设点为边的中点,求面积的最大值【解析】1因为,由正弦定理知,即,又由为的内角,故而,所以又由为的内角,故而 所以,即,当且仅当时取等号又,故而当且仅当时,取到最大值 sin,故ab的取值范围是考向4 与解三角形有关的其它最值范围问题【例9】【2021江苏南通如皋第一次联考】如图,矩形ABCD是某小区户外活动空地的平面示意图,其中AB50米,AD100米,现拟在直角三角形OMN内栽植草坪供儿童踢球娱乐其中,点O为AD的中点,OMON,点M在AB上,点N在CD上,将破旧的道路AM重新铺设草坪本钱为每平方米20元,新道路AM本钱为每米500元,设OMA,记草坪栽植与新道路铺设所需的总费用为f() 1求f()关于函数关系式,并写出定义域;2为节约投入本钱,当tan为何值时,总费用 f()最小?【答案】1f(),其定义域为;2试题解析:1据题意,在RtOAM中,OA50,OMA,所以AM,OM,据平面几何知识可知DON,在RtODN中,OD50,DON,所以ON,所以f() ,据题意,当点M与点B重合时,取最小值;当点N与点C重合时,取最大值,所以,所以f(),其定义域为 2由1可知,f(), , ,令0,得,其中,列表:极小值所以当时,总费用 f()取最小值,可节约投入本钱【跟踪练习】【2021浙江杭州模拟】在中,内角,的对边分别为,求角的大小;假设,且是锐角三角形,求实数的取值范围【答案】I;II 【解析】试题分析:由及三角函数中的恒等变换应用得,从而可求得,即可解得的大小;由得,由是锐角三角形,可求得的取取值范围,即可解得实数的取值范围
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!