资源描述
第二章 函数教案一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。(2)象与原象:如果给定一个从集合A到集合B的映射,那么集合A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。2、函数(1)函数的定义原始定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫作自变量。 近代定义:设A、B都是非空的数的集合,f:xy是从A到B的一个对应法则,那么从A到B的映射f:AB就叫做函数,记作y=f(x),其中,原象集合A叫做函数的定义域,象集合C叫做函数的值域。(2)构成函数概念的三要素 定义域对应法则值域3、函数的表示方法解析法列表法图象法注意:强调分段函数与复合函数的表示形式。二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式,解析式亦称“解析表达式”或“表达式”,简称“式”。(注意分段函数)求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法 (4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x的取值的集合。求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。3。复合函数定义域:已知f(x)的定义域为,其复合函数的定义域应由不等式解出。三、函数的值域1函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。2确定函数的值域的原则当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。3求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围;二次函数法:利用换元法将函数转化为二次函数求值域;反函数法:将求函数的值域转化为求它的反函数的值域;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;单调性法:利用函数的单调性求值域;不等式法:利用不等式的性质求值域;图象法:当一个函数图象可作时,通过图象可求其值域;几何意义法:由数形结合,转化距离等求值域。四函数的奇偶性1定义:设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为偶函数。设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为奇函数。如果函数是奇函数或偶函数,则称函数y=具有奇偶性。2.性质:函数具有奇偶性的必要条件是其定义域关于原点对称,y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,偶函数无反函数,奇函数的反函数还是奇函数,若函数f(x)的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和奇奇=奇 偶偶=偶 奇奇=偶 偶偶=偶 奇偶=奇两函数的定义域D1 ,D2,D1D2要关于原点对称对于F(x)=fg(x):若g(x)是偶函数,则F(x)是偶函数若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数3奇偶性的判断看定义域是否关于原点对称看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义;2、判断函数单调性(求单调区间)的方法:(1)从定义入手,(2)从图象入手,(3)从函数运算入手,(4)从熟悉的函数入手(5)从复合函数的单调性规律入手注:函数的定义域优先3、函数单调性的证明:定义法“取值作差变形定号结论”。4、一般规律(1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数;(2)若f(x)为增函数,则-f(x)为减函数;(3)互为反函数的两个函数有相同的单调性;(4)设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。六、反函数1、 反函数的概念:设函数y=f(x)的定义域为A,值域为C,由y=f(x)求出,若对于C中的每一个值y,在A中都有唯一的一个值和它对应,那么叫以y为自变量的函数,这个函数叫函数y=f(x)的反函数,记作,通常情况下,一般用x表示自变量,所以记作。注:在理解反函数的概念时应注意下列问题。(1)只有从定义域到值域上一一映射所确定的函数才有反函数;(2)反函数的定义域和值域分别为原函数的值域和定义域;2、求反函数的步骤(1)解关于x的方程y=f(x),达到以y表示x的目的;(2)把第一步得到的式子中的x换成y,y换成x;(3)求出并说明反函数的定义域(即函数y=f(x)的值域)。3、关于反函数的性质(1)y=f(x)和y=f-1(x)的图象关于直线y=x对称;(2)y=f(x)和y=f-1(x)具有相同的单调性;(3)y=f(x)和x=f-1(y)互为反函数,但对同一坐标系下它们的图象相同;(4)已知y=f(x),求f-1(a),可利用f(x)=a,从中求出x,即是f-1(a);(5)f-1f(x)=x;(6)若点P(a,b)在y=f(x)的图象上,又在y=f-1(x)的图象上,则P(b,a)在y=f(x)的图象上;(7)证明y=f(x)的图象关于直线y=x对称,只需证得y=f(x)反函数和y=f(x)相同;七二次函数1二次函数的解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a0),其中a是开口方向与大小,c是Y轴上的截距,而是对称轴。(2)顶点式(配方式):f(x)=a(x-h)2+k其中(h,k)是抛物线的顶点坐标。(3)两根式(因式分解):f(x)=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴两交点的坐标。求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称轴。又如,已知f(x)=ax2+bx+c(a0),方程f(x)-x=0的两根为,则可设f(x)-x=或。2二次函数f(x)=ax2+bx+c(a0)的图象是一条抛物线,对称轴,顶点坐标(1)a0时,抛物线开口向上,函数在上单调递减,在上单调递增,时,(2)a0)=b2-4acax2+bx+c=0 (a0)ax2+bx+c0 (a0)ax2+bx+c0)图象与解0=00,a0,M0,N0(4)对数换底公式:(5)对数的降幂公式:九指数函数与对数函数1、 指数函数y=ax与对数函数y=logax (a0 , a1)互为反函数,从概念、图象、性质去理解它们的区别和联系名称指数函数对数函数一般形式Y=ax (a0且a1)y=logax (a0 , a1)定义域(-,+ )(0,+ )值域(0,+ )(-,+ )过定点(,1)(1,)图象指数函数y=ax与对数函数y=logax (a0 , a1)图象关于y=x对称单调性a 1,在(-,+ )上为增函数a1,在(0,+ )上为增函数a1 ? y0? y0?比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同2、 ,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。十函数的图象1、作函数图象的基本方法有两种:(1) 描点法:1、先确定函数定义域,讨论函数的性质(奇偶性,单调性,周期性)2、列表(注意特殊点,如:零点,最大最小,与轴的交点)3、描点,连线如:作出函数的图象(2) 图象变换法:利用基本初等函数变换作图 平移变换:(左正右负,上正下负)即 对称变换:(对称谁,谁不变,对称原点都要变) 伸缩变换:训练题一、选择题:1、若与在区间上都是减函数,则的取值范围是(A) (B) (C) (D)2、定义在上的函数满足,当时,则(A) (B)(C) (D)3、已知函数f (x)的导数为且图象过点(0,5),当函数f (x)取得极大值5时,x的值应为A1B0C1D14、已知,且,则二次函数式的最小值为A B C 24 D5、若函数的图象如图所示,则的范围是( )A B(0,3) C(1,3) D(2,3)6、已知M=y|y=x2,N=y|x2y2=2,则MN=( )A、(1,1),(1,1) B、1 C、0,1 D、0,7、已知f(x)是R上的偶函数,对都有f(x6)=f(x)f(3)成立,若f(1)=2,则f(2020)=( )A、2020 B、2 C、1 D、08、若关于的不等式至少有一个负数解,那么实数的取值范围是(A) (B) (C) (D)9、设函数在点x=1处连续,则ABCD10、设函数、满足,则与的大小关系是 ()A. B. C. D. 11、已知函数在区间1,2 上是减函数,那么bcA.有最大值 B. 有最大值 C.有最小值 D. 有最小值12、已知函数( )ABC3D313、函数f(x)对一切实数x都满足f()=f(),并且f(x)=0有3个实根,则这3个实根之和为( ) A1 B0 C3 D14、设f(x)、g(x)是定义域为R的恒大于零的可导函数,且,则当ax f(b) g(b)Bf(x) g(a) f(a) g(x)Cf(x) g(b) f(b) g(x)Df(x) g(x) f(a) g(a)15、函数的反函数是( ) A. B. C. D. 16、已知函数,则的反函数为( ) A. B. C. D. 17、设函数. 若函数的图象与的图象关于直线对称,则的值为 A. B. C. 3 D. 5函数的增区间为( ).A. B . C. D. 17、设函数f(x)=,则f(log23)=( )A. B. C. D.已知函数f(x)=xsinx则的大小关系为( )(A)(B)(C)(D)二、填空题:18、若直线与函数,且的图象有两个公共点,则的取值范围是 19、方程f(x)=x的根称为f(x)的不动点,若函数有唯一不动点,且,则 。20、设函数则满足的x值为 已知函数是R上的减函数,A(0,-3),B(-2,3)是其图象上的两点,那么不等式的解集是_。21、已知集合是同时满足下列两个性质的函数的全体:在其定义域上是单调增函数或单调减函数;在的定义域内存在区间,使得在上的值域是()判断函数是否属于集合?并说明理由若是,请找出区间;()若函数,求实数的取值范围22、已知函数单调递增,在1,3单调递减. (1)求b、c之间的关系式; (2)当时,是否存在实数m,使得在区间上是单调函数?若存在,求出m的取值范围,若不存在,请说明理由.21、解:()的定义域是,在上是单调减函数 则在上的值域是由 解得:或(舍去)或(舍去)函数属于集合,且这个区间是 ()设,则易知是定义域上的增函数,存在区间,满足,即方程在内有两个不等实根 法一:方程在内有两个不等实根,等价于方程在内有两个不等实根即方程在内有两个不等实根根据一元二次方程根的分布有 解得因此,实数的取值范围是 法二:要使方程在内有两个不等实根,即使方程在内有两个不等实根如图,当直线经过点时,当直线与曲线相切时,方程两边平方,得,由,得因此,利用数形结合得实数的取值范围是22、解:(1) (2),其增区间为若存在m,则有 这与式矛盾,不存在实数m.
展开阅读全文