2020高考数学 考前冲刺第一部分专题八 探索性问题

上传人:艳*** 文档编号:110469782 上传时间:2022-06-18 格式:DOC 页数:6 大小:382.50KB
返回 下载 相关 举报
2020高考数学 考前冲刺第一部分专题八 探索性问题_第1页
第1页 / 共6页
2020高考数学 考前冲刺第一部分专题八 探索性问题_第2页
第2页 / 共6页
2020高考数学 考前冲刺第一部分专题八 探索性问题_第3页
第3页 / 共6页
点击查看更多>>
资源描述
专题八 探索性问题近年来,随着社会主义经济建设的迅速发展,要求学校由“应试教育”向“素质教育”转化,培养全面发展的开拓型、创造型人才。在这种要求下,数学教学中开放型问题随之产生。于是,探索性问题成了近几年来高考命题中的热点问题,它既是高等学校选拔高素质人材的需要,也是中学数学教学培养学生具有创造能力、开拓能力的任务所要求的。实际上,学生在学习数学知识时,知识的形成过程也是观察、分析、归纳、类比、猜想、概括、推证的探索过程,其探索方法是学生应该学习和掌握的,是今后数学教育的重要方向。一般地,对于虽给出了明确条件,但没有明确的结论,或者结论不稳定,需要探索者通过观察、分析、归纳出结论或判断结论的问题(探索结论);或者虽给出了问题的明确结论,但条件不足或未知,需要解题者寻找充分条件并加以证明的问题(探索条件),称为探索性问题。此外,有些探索性问题也可以改变条件,探讨结论相应发生的变化;或者改变结论,探讨条件相应发生的变化;或者给出一些实际中的数据,通过分析、探讨解决问题。探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。猜想归纳型问题是指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。其主要体现是解答数列中等与n有关数学问题。存在型问题是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。分类讨论型问题是指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。此种题型常见于含有参数的问题,或者情况多种的问题。探索性问题,是从高层次上考查学生创造性思维能力的新题型,正确运用数学思想方法是解决这类问题的桥梁和向导,通常需要综合运用归纳与猜想、函数与方程、数形结合、分类讨论、等价转化与非等价转化等数学思想方法才能得到解决,我们在学习中要重视对这一问题的训练,以提高我们的思维能力和开拓能力。【例1】已知方程kxy4,其中k为实数,对于不同范围的k值,分别指出方程所代表图形的类型,并画出曲线简图。【分析】由圆、椭圆、双曲线等方程的具体形式,结合方程kxy4的特点,对参数k分k1、k1、0k1、k0、k1、k1、0k1、k0、k1时,表示椭圆,其中心在原点,焦点在y轴上,a2,b; 当k1时,表示圆,圆心在原点,r2; 当0k1时,表示椭圆,其中心在原点,焦点在x轴上,a,b2; 当k0时,表示两条平行直线 y2; 当k0时,表示双曲线,中心在原点,焦点在y轴上。所有五种情况的简图依次如下所示:【注】分类讨论型问题,把所有情况分类讨论后,找出满足条件的条件或结论。【例2】给定双曲线x1, 过点A(2,0)的直线L与所给双曲线交于P及P,求线段PP的中点P的轨迹方程; 过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q、Q,且点B是线段Q、Q的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由。 【分析】两问都可以设直线L的点斜式方程,与双曲线方程联立成方程组,其解就是直线与双曲线的交点坐标,再用韦达定理求解中点坐标等。 xx22 k2代入消y后的方程计算得到:0,解得a24k4(k1)2,所以nk1时,结论也成立。综上所述,上述结论对所有的自然数n都成立。 设cb1()1(2)(1)(1)bbbnccc(1)+()()1(bbbn)(1)1【注】本题求数列的通项公式,属于猜想归纳型问题,其一般思路是:从最简单、最特殊的情况出发,推测出结论,再进行严格证明。第问对极限的求解,使用了“裂项相消法”,设立新的数列c具有一定的技巧性。此外,本题第问数列通项公式的求解,属于给出数列中S与a的函数关系式求a,对此类问题我们还可以直接求解,解答思路是由aSS的关系转化为数列通项之间的递推关系,再发现数列的特征或者通过构造新的数列求解。具体的解答过程是:由题意有,整理得到S(a2),所以S(a2), aSS(a2)(a2)整理得到(aa)( aa4)0由题意a0可以得到:aa40,即aa4数列a为等差数列,其中a2,公差d4,即通项公式为a4n2。【例4】已知x0,x1,且x (nN),比较x与x的大小。【分析】比较x与x的大小,采用“作差法”,判别差式的符号式,分情况讨论。【解】xxx由x0及数列x的定义可知,x0,所以xx与1x的符号相同。假定x0;假设nk时1x0,那么当nk1时,所以,对一切自然数n都有xx。【注】本题对1x的符号的探讨,由于其与自然数n有关,考虑使用数学归纳法解决。一般地,探索性问题与自然数n有关时,我们可以用归纳猜想证明的方法解出。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!