资源描述
第十四章 系列4第四节 4-5不等式证明第一部分 三年高考荟萃一、选择题1.(山东理4)不等式的解集是A-5,7 B-4,6C D【答案】D m 二、填空题1.(陕西理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评10.分)A(不等式选做题)若关于的不等式存在实数解,则实数的取值范围是 。答案 2.(江西理15)(2)(不等式选做题)对于实数,若的最大值为 【答案】5三、解答题1.(福建理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(3)(本小题满分7分)选修4-5:不等式选讲设不等式的解集为M(I)求集合M;(II)若a,bM,试比较ab+1与a+b的大小答案(3)选修45:不等式选讲本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。 解:(I)由所以(II)由(I)和,所以故2.(辽宁理24)选修4-5:不等式选讲已知函数=|x-2|x-5|(I)证明:3;(II)求不等式x2x+15的解集解: (I)因为EC=ED,所以EDC=ECD.因为A,B,C,D四点在同一圆上,所以EDC=EBA.故ECD=EBA,所以CD/AB. 5分 (II)由(I)知,AE=BE,因为EF=FG,故EFD=EGC从而FED=GEC.连结AF,BG,则EFAEGB,故FAE=GBE,又CD/AB,EDC=ECD,所以FAB=GBA.所以AFG+GBA=180.故A,B,G,F四点共圆 10分解: (I) 当 所以 5分 (II)由(I)可知, 当的解集为空集; 当; 当. 综上,不等式 10分3.(全国新课标理24)选修4-5:不等式选讲设函数,其中(I)当a=1时,求不等式的解集(II)若不等式的解集为x|,求a的值解:()当时,可化为由此可得 或故不等式的解集为或() 由得 此不等式化为不等式组 或即 或因为,所以不等式组的解集为由题设可得= ,故2020年高考题 一、填空题 1.(2020陕西文)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)不等式3的解集为. 。【答案】解析:B.(几何证明选做题)如图,已知RtABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD cm.【答案】解析:,由直角三角形射影定理可得二、简答题2.(2020辽宁理)(24)(本小题满分10分)选修4-5:不等式选讲已知均为正数,证明:,并确定为何值时,等号成立。证明:(证法一)因为a,b,c均为正数,由平均值不等式得 所以 6分故.又 所以原不等式成立. 8分 当且仅当a=b=c时,式和式等号成立。当且仅当时,式等号成立。即当且仅当a=b=c=时,原式等号成立。 10分(证法二)因为a,b,c均为正数,由基本不等式得所以 同理 6分故 所以原不等式成立. 8分当且仅当a=b=c时,式和式等号成立,当且仅当a=b=c,时,式等号成立。即当且仅当a=b=c=时,原式等号成立。 10分3.(2020福建理)本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题做答,满分14分。如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵M=,且,()求实数的值;()求直线在矩阵M所对应的线性变换下的像的方程。(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。()求圆C的直角坐标方程;()设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。(3)(本小题满分7分)选修4-5:不等式选讲已知函数。()若不等式的解集为,求实数的值;()在()的条件下,若对一切实数x恒成立,求实数m的取值范围。(1)选修4-2:矩阵与变换【命题意图】本小题主要考查矩阵与变换等基础知识,考查运算求解能力。【解析】()由题设得,解得;()因为矩阵M所对应的线性变换将直线变成直线(或点),所以可取直线上的两(0,0),(1,3),由,得:点(0,0),(1,3)在矩阵M所对应的线性变换下的像是(0,0),(-2,2),从而直线在矩阵M所对应的线性变换下的像的方程为。(2)选修4-4:坐标系与参数方程 【命题意图】本小题主要考查直线的参数方程、圆的极坐标方程、直线与圆的位置关系等基础知识,考查运算求解能力。【解析】()由得即 ()将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|=。(3)选修4-5:不等式选讲【命题意图】本小题主要考查绝对值的意义、绝对值不等式等基础知识,考查运算求解能力。【解析】()由得,解得,又已知不等式的解集为,所以,解得。()当时,设,于是=,所以当时,;当时,;当时,。4.(2020江苏卷)21.选做题本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。D 选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。 解析 本题主要考查证明不等式的基本方法,考查推理论证的能力。满分10分。(方法一)证明:因为实数a、b0,所以上式0。即有。(方法二)证明:由a、b是非负实数,作差得当时,从而,得;当时,从而,得;所以。2020年高考题一、 简答题1、(09海南24)(本小题满分10分)选修4-5:不等式选讲如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.(1)将y表示成x的函数;(2)要使y的值不超过70,x 应该在什么范围内取值? 解()()依题意,x满足 解不等式组,其解集为【9,23】所以 2、(09江苏)D. 选修4 - 5:不等式选讲 设0,求证:.证明:因为0,所以0,0,从而0,即.
展开阅读全文