资源描述
第2章 2.2 第1课时等差数列的概念及通项公式一、选择题1(2020重庆文)在等差数列an中,a1a910,则a5的值为()A5 B6C8 D10答案A解析设等差数列an的公差为d,则a1a9a1a18d2a18d2(a14d)2a510,a55.2在数列an中,a12,2an12an1,则a101的值为()A49 B50C51 D52答案D解析由2an12an1得an1an,an是等差数列首项a12,公差d,an2(n1)a10152.3等差数列相邻四项是a1,a3,b,ab,那么a,b的值分别为()A2,7B1,6C0,5D无法确定答案A解析由题设2(a3)a1b,ab50又2b(a3)(ab),2ab30,由得4设数列an是递增等差数列,前三项和为12,前三项积为48,则它的首项为()A1B2C4D3答案B解析由题设,a24,a1,a3是一元二次方程x28x120的两根,又a3a1,a12.5an是首项a11,公差d3的等差数列,如果an2 005,则序列号n等于()A667B668C669D670答案C解析由等差数列通项公式得20201(n1)3解得n669.6等差数列an中,a12,a3a510,an13,则n的值为()A10B11C12D13答案C解析设公差为d,a3a510,a12,2a16d10,d1.ana1(n1)d2n1n1,又an13,n113,n12.二、填空题7在等差数列an中,已知a12,a2a313,则a4a5a6_.答案42解析a1a2a315,a25,d3,a5a23d14,a4a5a63a542.8等差数列an的前三项依次为x,2x1,4x2,则它的第5项为_答案4解析2(2x1)x(4x2),x0,a10,a21,da2a11,a5a14d4.三、解答题9在等差数列an中,若a2a4a5a6a8450,求a1a9.解析a2a8a4a62a5,a2a8a4a6a55a5,5a5450,a590.又a1a92a5,a1a9180.10在等差数列an中,已知a1,a2a54,an33,求n.解析a2a5a1da14d2a15d25d,又a2a54,25d4,解得d.ana1(n1)d(n1)33,解得n50.能力提升一、选择题1已知a,b,则a,b的等差中顶为()A.B.C.D.答案A解析.2已知数列an中,a32,a71,又数列是等差数列,则a11等于()A0B.C.D1答案B解析令bn,由题设b3,b7且bn为等差数列,b7b34d,d.b11b74d,又b11,a11.二、填空题3在a和b(ab)两数之间插入n个数,使它们与a、b组成等差数列,则该数列的公差为_答案解析设插入的n个数为b1、b2bn则由a、b1、b2bn、b成等差数列ba(n1)d,d.4在等差数列an中,a13a8a15120,则3a9a11的值为_答案48解析a13a8a15a13(a17d)a114d5a135d5(a17d)120,a17d24.3a9a113(a18d)(a110d)3a124da110d2a114d2(a17d)48.三、解答题5设a1kc,a2kc2,a3kc3(k0,c0),求证:lga1,lga2,lga3成等差数列解析a1kc,a2kc2,a3kc3(k0,c0),lga1lga3lg(a1a3)lg(k2c4)lg(kc2)22lg(kc2)2lga2,即lga1lga32lga2.lga1,lga2,lga3成等差数列6已知等差数列an,设bn()an,又已知b1b2b3,bb2b3,求an的通项公式解析b1b2b3()a1()a2()a3,b1b2b3()a1a2a3,a1a2a33,因为a1,a2,a3成等差数列,可设a1a2d,a3a2d,于是a21.由()1d()1d,得2d2d.解得d2或d2.当d2时,a11d1,an12(n1)2n3.当d2时,a11d3,an32(n1)2n5.7已知f(x),在数列xn中,xnf(xn1)若x1,求x100的值解析xnf(xn1),xn即xnxn13xn3xn1得1,即.是以2为首项,为公差的等差数列(n1),x100.8成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数解析设这四个数为a3d,ad,ad,a3d,由题意可知,即,解得或,故所求四个数为2,5,8,11或11,8,5,2.
展开阅读全文