资源描述
专题一:规律探索问题 1. (11漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_ 枚(用含n的代数式表示)第1个图形第2个图形第3个图形2. .如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为 .3(2020湛江)观察下列算式:313,329,3327,3481,35243,36729,372 187,386 561,通过观察,用你所发现的规律确定32 000的个位数字是()A3 B9 C7 D14(2020盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A38 B52 C66 D745(2020武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行从内到外,它们的边长依次为2,4,6,8,顶点依次用A1,A2,A3,A4,表示,则顶点A55的坐标是()A(13,13) B(13,13)C(14,14) D(14,14)6(2020广东)阅读下列材料:12(123012),23(234123),34(345234),由以上三个等式相加,可得12233434520.读完以上材料,请你计算下列各题:(1)1223341011(写出过程);(2)122334n(n1)_;(3)123234345789_.7(2020眉山)如图,将第一个图(图)所示的正三角形连结各边中点进行分割,得到第二个图(图);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图);再将第三个图中最中间的小正三角形按同样的方式进行分割,则得到的第五个图中,共有_个正三角形8(2020龙岩)如图是圆心角为30,半径分别是1、3、5、7、的扇形组成的图形,阴影部分的面积依次记为S1、S2、S3、,则S50_.(结果保留)解答题例1(15分)(2020杭州)给出下列命题:命题1:点(1,1)是直线yx与双曲线y的一个交点;命题2:点(2,4)是直线y2x与双曲线y的一个交点;命题3:点(3,9)是直线y3x与双曲线y的一个交点;(1)请观察上面的命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确的例2某数学兴趣小组开展了一次活动,过程如下:设BAC=(090)现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒数学思考:(1)小棒能无限摆下去吗?答:_ (填“能“或“不能”)(2)设AA1=A1A2=A2A3=1=_ 度;若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求出此时a2,a3的值,并直接写出an(用含n的式子表示)活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1数学思考:(3)若已经向右摆放了3根小棒,则1=_ ,2=_ ,3=_ (用含的式子表示);(4)若只能摆放4根小棒,求的范围专题一:规律探索作业: 姓名_1(2020福州)如图,直线yx,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按此作法进行下去,点A5的坐标为_2(2020十堰)如图,n1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,四边形PnMnNnNn1的面积为Sn,通过逐一计算S1,S2,可得Sn_.3(2020连云港)如图,ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去,利用这一图形,能直观地计算出_.4(2020江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn下列结论正确的有()四边形A2B2C2D2是矩形; 四边形A4B4C4D4是菱形;四边形A5B5C5D5的周长是 四边形AnBnCnDn的面积是A、B、 C、D、5. 我们把分子为1的分数叫做理想分数,如,任何一个理想分数都可以写成两个不同理想分数的和,如=+;=+;=+;根据对上述式子的观察,请你思考:如果理想分数(n是不小于2的正整数)=+,那么a+b= (用含n的式子表示)6. 如图,在ABC中,ACB90,A30,BC1过点C作CC1AB于C1,过点C1作C1C2AC于C2,过点C2作C2C3AB于C3,按此作发进行下去,则ACn 72002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”若这四个全等的直角三角形有一个角为30,顶点、和、分别在直线-和轴上,则第个阴影正方形的面积为 8(2020江西)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题【实验与论证】设旋转角A1A0B1(A1A0A2),3、4、5、6所示的角如图所示(1)用含的式子表示角的度数:3_,4_,5_.(2)图图中,连结A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;【归纳与猜想】设正n边形A0A1A2An1与正n边形A0B1B2Bn1重合(其中,A1与B1重合),现将正n边形A0B1B2Bn1绕顶点A0逆时针旋转(0)(3)设n与上述“3,4,”的意义一样,请直接写出n的度数(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由
展开阅读全文