小升初数学试题 典型中点构造.尖子班.全国通用 无答案

上传人:名*** 文档编号:108954245 上传时间:2022-06-16 格式:DOC 页数:13 大小:4.03MB
返回 下载 相关 举报
小升初数学试题 典型中点构造.尖子班.全国通用 无答案_第1页
第1页 / 共13页
小升初数学试题 典型中点构造.尖子班.全国通用 无答案_第2页
第2页 / 共13页
小升初数学试题 典型中点构造.尖子班.全国通用 无答案_第3页
第3页 / 共13页
点击查看更多>>
资源描述
5典型中点构造四边形4级四边形综合四边形5级典型中点构造四边形6级平移和几何最值问题春季班第六讲春季班第五讲春季班第四讲满分晋级阶梯 漫画释义 空欢喜知识互联网 题型切片题型切片(三个)对应题目题型目标三角形中位线例1,例2,例7,练习1,练习2,练习3;中点四边形例3,练习4;直角三角形斜边中线例4,例5,例6,练习5题型一:三角形中位线思路导航 三角形中位线定义:连接三角形两边中点的线段;定理:三角形中位线平行于三角形的第三边且等于第三边的一半 如图:若为的中位线,则,且三角形中位线中隐含的重要性质:一个三角形有三条中位线三角形的三条中位线将原三角形分割成四个全等的三角形三角形的三条中位线将原三角形划分出三个面积相等的平行四边形三角形的三条中位线组成一个三角形,其周长为原三角形周长的一半,其面积为原三角形面积的四分之一如图:、是的三条中位线,则有,例题精讲 【引例】 如图,已知,分别是的中点,求证:且 【解析】 延长DE到点F,使EF=DE,连接FC,DC,AFAE=EC四边形ADCF是平行四边形CF/DA且CF=DA,CF/BD且CF=BD四边形DBCF是平行四边形DF/BC且DF=BC又DE/BC,且典题精练 【例1】 已知四边形是梯形, 如图1,、是、的中点求证:且 如图2,、是、的中点试写出与、之间的关系 如图3,若梯形满足、是、的中点试写出与、 之间的数量关系 【例2】 四边形ABCD中, E、F分别为AB、CD的中点,求证:;四边形ABCD中,ACBD,E、F分别为AB、CD的中点,求证:题型二:中点四边形思路导航 定义:顺次连接一个四边形四边中点所得四边形称为中点四边形 中点四边形题型的思路是将四边形转化为三角形,构造三角形中位线进行证明而探索中点四边形为特殊的平行四边形取决于原四边形的两条对角线是否相等或垂直中点四边形:对角线+中位线顺次连结平行四边形各边中点所构成的四边形是 ; 顺次连结矩形各边中点所构成的四边形是 ;顺次连结菱形各边中点所构成的四边形是 ;顺次连结直角梯形各边中点所构成的四边形是 ;顺次连结等腰梯形各边中点所构成的四边形是 ;顺次连结任意四边形各边中点所构成的四边形是 ;顺次连结对角线相等的四边形的各边中点所构成的四边形是 ;顺次连结对角线互相垂直的四边形的各边中点所构成的四边形是 例题精讲 【引例】 如图,四边形中,分别是的中点 求证:四边形为平行四边形 【解析】 如图,连接分别是的中点HG、EF是DAC和BCA的中位线,可得HG/EF且HG=EF, 四边形为平行四边形典题精练 【例3】 已知:如图1, 在正方形中,点、分别是边、上的点,且,、交于点,则可得结论: ;(不需要证明)如图2,若点、分别在正方形的边、的延长线上,且,此时上面的结论、是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;如图3,在的基础上,连接和,若点、分别为、 的中点,试判断四边形的形状,并证明你的结论 题型三:直角三角形斜边中线思路导航 直角三角形斜边中线定理:直角三角形斜边上的中线等于斜边的一半若为斜边上的中线,则相关结论如上图,;为等腰三角形相关模型在由两个直角三角形组成的图中,为公共边的中点,总有结论:例题精讲 【引例】 在ABC中,CDAB交AB于D,BEAC交AC于E, F为BC的中点,连DF、EF、 DE ,请判定DEF的形状【解析】 CDAB,BEACDBC和EBC是直角三角形F是斜边BC的中点DEF是等腰三角形典题精练 【例4】 锐角中,若于,于,、分别为、的中点,若,则的长为 如图,四边形ABCD中,取AC中点O,BC中点E,连接OD、OE、DE,则= 【例5】 已知:在中,点在直线上,与直线垂直,垂足为,且点为中点,连接、 如图1,若点在线段上,探究线段与及与所满足的数量关系,并直接写出你得到的结论; 如图2,若点在延长线上,你中的结论是否发生变化?写出你的猜想并证明;【例6】 在ABC中,D为AB的中点,分别延长CA,CB到点E,F,使DE=DF;过E,F分别作CA,CB的垂线,相交于PM、N是AP、BP的中点,分别连接EM、DM和DN、FN,求证:DEMFDN; PAE=PBF真题赏析 【例7】 我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形请解答下列问题:写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;如图1,ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G求证:四边形AGEC是等邻角四边形如图2,若点D在ABC的内部,其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形? 复习巩固题型一 三角形中位线 巩固练习【练习1】 已知:如图,平行四边形ABCD中,BDC的平分线DE交直线AB于E 取DE中点M并连接CM、BM直接写出线段BM和DE的位置关系 若BD=2DC,则DCM的形状是_证明你的结论 【练习2】 已知:如图所示,在中,、分别为、上的点,且,、分别是、的中点,过的直线交于点,交于点,求证:【练习3】 如图l,在四边形中,分别是的中点,连接并延长,分别与的延长线交于点,则(不需证明)(温馨提示:在图1中,连接,取的中点,连接,根据三角形中位线定理,可证得,从而,再利用平行线的性质,可证得)问题:如图2,在四边形中,与相交于点,分别是、的中点,连接,分别交于点,判断的形状,并证明 题型二 中点四边形 巩固练习【练习4】 ABC的周长为64,E、F、G分别为AB、AC、BC的中点,、分别 为EF、EG、GF的中点,的周长为 如果ABC、EFG、分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第个三角形的周长是 题型三 直角三角形斜边中线 巩固练习 【练习5】 如图,在五边形中,为的中点求证:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!