资源描述
人教版中职数学教材基础模块上册全册教案【课题】1.1集合的概念【教学目标】知识目标:(1) 理解集合、元素及其关系;(2) 掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3) 针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4) 通过练习,巩固知识.(5) 依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)教学过程】教学教师学生教学时过程行为行为意图间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习介绍倾听引领方法、学习特点等等.学生冋学们就要开始新的人生阶段了,很高兴可以和大家一起了解说明了解度过这段美好的时光希望同学们可以通过自己不懈的努力,新阶word范文教学教师学生教学时过程行为行为意图间在毕业后能够找到一个合适的工作,能够独立生存,能够成为数学为家庭、为企业、为社会做出自我贡献的能工巧匠当然要达学习到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始1学习一一旅程讲解领会特点学习是一段旅程,对知识的探求永无止境,而且这段旅程可重点以从任何时候开始!未来的成功在现在脚下!曰2.老师导游树立与大家一起开始这一段新的旅程、一起分享学习中的快乐、学生起体会成长与进步的滋味的数3目的一一运用说明/学学我们应当能够理解数学,而且通过运用数学进行沟通和推习信理,在现实生活中应用数学来解决问题,养成一种数学上的自了解心信心理请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4准备必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的父流.8回合为什么要学数学?学什么样的数学?怎么学数学?*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识将引入对象进行分类和归类,加强对其属性的认识,是解决复杂问题介绍了解教学的重要手段之一例如,按照使用功能分类存放物品,在取用说明内容时就十分方便.这就是我们将要研究学习的1.1集合.10*创设情景兴趣导入问题播放观看从实际事某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水课件课件例使笔、橡皮、果冻、薯片、裁纸刀、尺子那么如何将这些商品学生放在指定的篮筐里?自然解决质疑思考的走教学过程教师行为学生行为教学意图时间显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.归纳引导分析自我建构向知识点启发学生体会集合概念15面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合.而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的兀素.*动脑思考探索新知概念由某些确定的对象组成的整体叫做集合,简称集组成集合的对象叫做这个集合的兀素如大于2并且小于5的自然数组成的集合是由哪些兀素组成?表示总结归纳讲解说明强调质疑分析讲解理解领会记忆思考回答带领学生理解整体个体意义为后续学习做准备通过例题进一步领会元素确定性观察学生般采用人写英乂字母A,B,C,表小集合,小写英乂字母a,b,c,表小集合的兀素.拓展集合中的兀素具有下列特点:(1) 互异性:一个给定的集合中的兀素都是互不相冋的;(2) 无序性:一个给定的集合中的兀素排列无顺序;(3) 确疋性:一个给疋的集合中的兀素必须是确疋的不能确定的对象,不能组成集合例如,某班跑得快的同学,就不能组成集合.例1下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程X210的所有解;(4)不等式x20的所有解.解由于小于10的自然数包括0、1、2、3、4、5、6、7、&9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不教学过程教师行为学生行为教学意图时间能组成集合.(3)方程X210的解是-1和1,它们是确定的对象,所以可以组成集合.(4)解不等式x20,得x2,它们是确定的对象,所以可以组成集类型由方程的所有解组成的集合叫做这个方程的解集由不等式的所有解组成的集合叫做这个不等式的解集像方程X210的解组成的集合那样,由有限个兀素组成的集合叫做有限集像不等式x-20的解组成的集合那样,由无限个元素组成的集合叫做无限集像平面上与点0的距离为2cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集由数组成的集合叫做数集方程的解集与不等式的解集都是数集.所有自然数组成的集合叫做自然数集,记作N所有正整数组成的集合叫做正整数集,记作N或z.所有整数组成的集合叫做整数集,记作Z所有有理数组成的集合叫做有理数集,记作Q所有实数组成的集合叫做实数集,记作R不含任何兀素的集合叫做空集,记作例如,方程X2+1=O的实数解的集合里不含有任何元素,所以这个解集就是空集关系元素a是集合A的元素,记作aA(读作“a属于A”,a不是集合A的元素,记作aA(读作“a不属于A”).集合中的对象(兀素)必须是确疋的对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一提问归纳说明引领强调讲解分析强调讲解理解领会明确思考了解理解记忆领会是否理解知识占八、集合类型比较简单可以让学生自己分析强调各个数集的内涵和表示字母突出强调符号规范书写word范文35教师学生教学行为行为意图*运用知识强化练习1用符号“”或“”填空提问(1)-3N,0.5N,3N;(2)1.5乙-5乙3Z;巡视(3)-0.2Q,nQ,7.21Q;1.5R,-1.2R,nR.指导2指出下列各集合中,哪个集合是空集?(1)方程X210的解集;(2)方程x22的解集.练习1.1.1及时思考了解学生动手知识求解掌握交流情况40*创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些兀素用较小于5的实数所组成的集合中有哪些兀素解决不大于5的自然数所组成的集合中只有0、1、5这6个兀素,这些兀素是可以一一列举的2、3、4、而小于5的实数有无穷多个,而且无法一一列举出来,但兀素的特征是明显的:(1)集合的元素都是实数;(2)集合的元素都小于5.归纟纳当集合中兀素可以一一列举时,可以用列举的方法表示集合;当集合中兀素尢法一一列举但兀素特征是用显时,可以分明出集合的兀素所具有的特征性质,通过对兀素特征性质的描述来表示集合.*动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的兀素一一夕列举出来与在化括号内,简单质疑引导讲解总结仔细思考自我分析自我建构理解的问题给学生参与学习的起占八、引导学生得出结论带领45word范文教学过程教师行为学生行为教学意图时间兀素之间用逗号隔开如不大于5的自然数所组成的集合可以分析记忆学生表示为O,1,2,3,4,5讲解总结关键集口当集合为无限集或为兀素很多的有限集时,在不发生误解词语了解两种的情况下可以米用省略的写法例如,小于100的自然数集可表示方法以表示为0,1,2,3,L,99,正偶数集可以表示为2,4,6丄.特别(2)描述法在花括号内画一条竖线,竖线的左侧写出集合理解注意的代表兀素,竖线的右侧写出兀素所具有的特征性质如小于强调强调记忆写法5的头数所组成的集合可表示为x|x5,xR.的规如果从上下文能明显看出集合的兀素为实数,那么可以范性将xr省略不写如不等式3x60的解集可以表示为说明了解x|x250为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表兀素,直接用中文来表示集合的特征性质例如所有正奇数组成的集合可以表示为正奇数*巩固知识典型例题例2用列举法表示下列集合:通过例题(1)由大于4且小于12的所有偶数组成的集合;进一(2)方程X25x60的解集.步领分析这两个集合都是有限集.(1)题的兀素可以直接列举出八会集合的2来;(2)题的兀素需要解方程X25x60才能得到.观察表示解(1)集合表示为2,0,2,4,6,8,10;说明(2)解方程X25x60得x11,x26.故方程解集为强调注意1,6观察思考学生例3用描述法表示下列各集合:引领是否(1)不等式2x1,0的解集;教学教师行为学生行为教学意图时间过程(2)所有奇数组成的集合;讲解理解说明主动知识(3)由第一象限所有的点组成的集合.求解占分析用描述法表示集合关键是找出兀素的特征性质.(1)题引领八、解不等式就可以得到不等式解集兀素的特征性质;(2)题奇数分析突出的特征性质是“兀素都能写成2k1(kZ)的形式”.题兀强调观察表示素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为含义法的正数.思考书写求解要规解(1)解不等式2x1,0得x,-,所以解集为2说明范1领会xx,;2复习对应(2)奇数集合x|x2k1,kZ;思考数学求解60(3)第一象限所有的点组成的集合为x,y|x0,y0.知识*运用知识强化练习教材练习1121.用列举法表示卜列各集合.(1)方程X23x40的解集;(2)方程4x30的解集;巡视动手检验(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组学习成的集合.求解的效2.用描述法表示下列各集合:指导果(1)大于3的实数所组成的集合;(2)方程X240的解集;70(3)大于5的所有偶数所组成的集合;(4)不等式2x53的解集.*理论升华整体建构从整本次课重点学习了集合的表示法:列举法、描述法,用列体再举法表示集合,兀素清晰明了;用描述法表示集合,兀素特征总结理解次性质直观明确归纳体会突出因此表示集合时,要针对实际情况,选用合适的方法例集口教学过程教师行为学生行为教学意图时间女如,不等式(组)的解集,般采用扌田述法来表示,方程(组)表示方法的解集,般采用列举法来表小.75*巩固知识典型例题例4用适当的方法表示下列集合:(1) 方程x+5-O的解集;(2) 不等式3x-75的解集;引领分析领会进行e厶综合题讲解巩(3)大于3且小于11的偶数组成的集合;固所(4)不大于5的所有实数组成的集合;归纳解(1)-5;(2)x|x4;讲解思考的强(3)4,6,8,10;(4)x|x=);总结理解次突归纳体会出首先要分清楚对象,然后再根据关系,正确选用符号.出65*巩固知识典型例题巩固例5用适当的符号填空:引领领会所归(1)1,3,51,2,3,4,5,6;纳强x|x293,-3;分析化点,2x|x|=2;(4)2N;质疑思考可以aa;0;适当(7)1,1x|x210.求解的教解(1)1,3,5u1,2,345,6讲解给学生完(2)x|/=9=3,-3;自我成再因为x|x|22,2,所以2ux|x|2;说明强化进行2N;aa;0Y;核对75因为X|X210=,所以1,1YX|X210.教学教师学生教学时过程行为行为意图间*运用知识强化练习用适当的符号填空:提问动手及时2.5Z;1x|x31;求解了解(3)逅血x|x22;(4)aa,b,c:巡视学生(5)ZN;(6)x|x40;(7)Q:(8)1,3,53,5.指导汇总交流知识掌握情况80*归纳小结强化思想培养本次课学了哪些内容?重点和难点各是什么?引导回忆)1学生*自我反思目标检测总结本次课采用了怎样的学习方法?提问反思学习你是如何进行学习的?过程你的学习效果如何?能力85*继续探索活动探究(1)阅读:教材章节1.2;学习与训练1.2;说明记录书写:习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例.90【课题】1.3集合的运算(1)教学目标】知识目标:(1) 理解并集与交集的概念;(2) 会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力教学重点】交集与并集.教学难点】用描述法表示集合的交集与并集.word范文教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时:间*揭示课题1.3集合的运算*创设情景兴趣导入问题1在运动会上,某班参加百米赛跑的有4名冋学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元糸之间的关系学有2名冋学,那么这些冋学之间有什么关系?问题2某班第一学期的一好学生有李佳、王燕、张洁、王勇;第学期的一好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是一好学生?用我们学过的集合来表示:A=李佳,王燕,张洁,王勇;B=王燕,李炎,王勇,孙颖;C=王燕,王勇那么这三个集合之间有什么关系?问题3集合A=直角二角形:B=等腰二角形:C=等腰直角三角形.那么这三个集合之间有什么关系?解决通过上面的二个问题的思考,可以看出集合C中的兀素是由既属于集合A又属于集合B中的所有兀素构成的,也就是由集合A、B的相冋兀素所组成的,这时,将C称作是A与B的交集.教学教师行学生教学时间过程为行为意图5*动脑思考探索新知总结思考般对于两个给定的集合A、B,由集合A、B的相归纳带领地,冋兀素所组成的集合叫做A与B的交集,记作AIB,读作“A归纳学生交B”.总结仔细理解三个即AIBx|xA且xB.分析记忆问题集合A与集合B的父集可用卜图表示为:讲解的共关键冋占A飞B冋点词语得到交集負篦启的定强调图像观察义求两个集合交集的运算叫做交运算含义10*巩固知识典型例题例1已知集合A,B,求AAB.A=1,2,B=2,3;通过说明观察例题A=a,b,B=c,d,e,f;进一A=1,3,5,B=;步领(4)A=2,4,B=1,2,3,4.会交集分析集合都是由列举法表示的,因为AAB是由集合A和集强调思考合B中相冋的兀素组成的集合,所以可以通过列举出集合的所注意有相冋兀素得到集合的交集观察解相冋兀素是2,AAB=1,2A2,3=2;引领主动学生(2)没有相冋兀素AAB=a,bA,d,e,f=;求解是否(3)因为A是含有二个兀素的集合,是不含任何兀素的理解空集,所以它们的交集是不含任何兀素的空集,即AAB=;知识占(4)因为A中的每一个兀素的都是集合B中的兀素,所以AAB=A.例2设Ax,y|xy0,Bx,y|xy4,求AIB.分析集合A表示方程xy0的解集;集合B表示方程讲解观察复习word范文教师学生教学xy4的解集.两个解集的交集就是二元一次方程组xy0,的解集.xy4解解方程组yx20得所以AIB2,2.4.y2.x,2,Bx|0x,3,求AIBxyx|1分析这两个集合都是用描述法表示的集合,并且无法列举出集合的兀素如下图所示行为行为意图方程组的说明引领思考求解解法突出我们知道,这两个集合都可以在数轴上表示出来,观察图形可以得到这两个集合的交集强调含义领会TL-23x思考求解数轴的作用强调数形结合解AIBx|1x剟2Ix|0x3由交集定义和上面的例题,可以得到:对于任意两个集合A,B,都有ABBA.(2)AAAA(3)ABA,ABB;(4)如果AB,那么ABA*运用知识强化练习练习1311.设A1,0,1,2B0,2,4,6,求AI2设Ax,y|x2y1,Bx,y|x2yx|0x,2.B3.设Ax|0剟x4x|2xw2,B3,求AIB.,求AIB.*创设情景兴趣导入问题1某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A=该班团B=该班非团员;C=该班同那么这三员个集合之间有什么关系?学问题2某班第一学期的三好学牛有李佳、王燕、张洁、王勇;说明启发引导提问巡视指导介绍质疑了解可以父给学生自我发现归纳25动手求解交流了解观看课件思考及时了解学生知识掌握情况从实际事例使学生自然35教学过程教师行为学生行为教学意图时间第学期的一好学生有王燕、李炎、王勇、孙颖,那么该班第的走学年的二好学生都有哪些同学?向知用我们学过的集合来表示:A=李佳,王燕,张洁,王勇;识点B=王燕,李炎,王勇,孙颖;C=李佳,王燕,张洁,王勇,李炎,孙颖那么这三个集合之间有什么关系?引导问题3集合A=锐角三角形;B=钝角三角形;C=斜三角式启形.那么这三个集合之间有什么关系?解决引导分析自我分析发学理解集口通过上面的二个问题的思考,可以看出集合C中的兀素是的元由集合A、B的所有兀素所组成的,这时,将C称作是A与B糸大的并集.系40*动脑思考探索新知般地,对于两个给定的集合A、B,由集合A、B的所总结思考带领有兀素所组成的集合叫做A与B的并集,记作AB(读作“A归纳学生总结并B”三个即ABxxA或xB.仔细理解问题分析记忆的统集合A与集合B的并集可用图形表示为:讲解占关键得到词语并集up觀辔m含义45求两个集合并集的运算叫做并运算*巩固知识典型例题例4已知集合A,B,求AUB.A=1,2,B=2,3;说明观察通过A=a,b,B=c,d,e,f;例题A=1,3,5,B=;进一(4)A=2,4,B=1,2,3,4.步领会并分析因为AUB是由集合A和集合B的所有兀素组成,当集强调思考集教过学程教师行为学生行为教学意图时间合都是用列举法表示时,通过列举这两个集合的兀素,可以得到并集,注意相冋的兀素只列举一次解(1)AUB=1,2U2,3=1,2,3;引领主动求解aUB=a,bUc,d,e,f=a,b,c,d,e,f;(3)因为是不含任何兀素的空集,讲解所以AUB=1,3,5U=1,3,5;说明思考可以集合A是集合B的真子集,AUB=1,2,3,4=B.交给学生自我由并集定义和上面的例题,可以得到:理解发现对于任意的两个集合A与ABBA;B,都有:说明归纳AAA,AA启发(3)AAB,BAB;引导了解55(4)如果BA那么ABA*运用知识强化练习练习132提问求解反馈1.设A1,0,1,2,B0,2,4,6,求AUB.巡视交流学习2.设Ax|2x,2,Bx|0剟x4,求AUB.指导效果60*理论升华整体建构思考并回答下面的冋题:,人乙、/A?-/r质疑小组1集合的开集和父集有什么区别t?(含乂和符号)讨论2.在进行集合的并运算和交运算时各自的特点是什么?以学3集合用列举法和描述法表示时进行运算需要注意的问题是生的什么?小组(1)由集合A和集合B的公A与集合B的交集ABXB的所有元素组成的集合叫做共兀素组成的集合叫做集合xA且xB由集合A和集合集合A与集合B的并集归纳回答讨论教师归纳的形式强ABxxA或xB调重(2)交运算是寻找两个集合都有的公共部分,并运算是点突将两个集合所有的兀素进行合并.强调理解破难占八、教学过程教师行为学生行为教学意图时间(3)列举法求解时要不重不漏,描述法求解时要利用好强化数轴并注意端点的处理.70*巩固知识典型例题例5设A2,3,5,B1,0,1,2,求AB,AB.进行解AB2,3,51,0,1,22;并交引领领会的对AB2,3,51,0,1,21,0,1,2,3,5分析比例例6设Ax0x2,Bx1x3,求AB,AB.题讲解将集合A、B在数轴上表示:解巩固所T11o思考归纳-io7:23x讲解说明求解的强AlBx|1XW2,AUBx|0x3化点75*归纳小结强化思想引导回忆培养本次课学了哪些内容?重点和难点各是什么?学生总结*自我反思目标检测反思本次课米用了怎样的学习方法?你是如何进行学习的?你提问反思学习的学习效果如何?过程1.A1,0,1,2,B0,2,4,6,求AB,AB.巡视动手的能力2.Ax2x剟2,Bx|0x?4,求AB,AB.指导求解85*继续探索活动探究(1)读书部分:教材章节1.3;说明记录90(2)书面作业:学习与训练1.3;(3)实践调杳:举出交集和并集的生活实例【课题】1.3集合的运算(2)教学目标】知识目标:(1) 理解全集与补集的概念;(2) 会求集合的补集.能力目标:word范文(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3) 通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4) 讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)教学过程】教学教师学生教学过程行为行为意图复习知识揭示课题前面学习了集合的并运算和交运算相关问题,试着回忆下面的知识点:质疑回忆对前1集合的并集和父集有什么区别?(含义和符号)ABxxA或xBABxxA且xB面学习的2.在进行集合的并运算和交运算时各自的特点是什么?内容并运算是将两个集合所有的兀素进行合并,交运算是寻找引导加深进行两个集合都有的共冋兀素.认识复习3集合用列举法和描述法表示时进行运算需要注意的问题是强调有助什么?于新列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端提问回答内容点的处理.的学交流完成下面的练习:教学教师学生教学时过程行为行为意图间1.设A1,0,1,2,B0,2,4,6,求AUB,AlB.明确2.设Ax|2x,2,Bx|0剟x4,求AUB,AlB.介绍了解10下面我们将学习另外一种集合的运算.*创设情景兴趣导入问题质疑思考某学习小组学生的集合为U-王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧,其中在学校引导式启应用文写作比赛与技能大赛中获得过金奖的学生集合为P=王引导发学明,曹勇,王亮,李冰,张军,那么没有获得金奖的学生有分析生理哪些?自我解集解决分析合之没有获得金奖的学生的集合为Q=赵云,冯佳,薛香芹,间亓钱忠良,何晓慧总结领会17Lj结论归纳素的关系可以看到,P、Q都是U的子集,并且集合Q是由属于集15合U但不属于集合P的兀素所组成的集合.特别*动脑思考探索新知概念注意如果一个集合含有我们所研究的各个集合的全部兀素,在仔细思考讲解研究过程中,可以将这个集合叫做全集,一般用U来表示,所分析关键研究的各个集合都是这个集合的子集.讲解词的理解在研究数集时,常把实数集R作为全集.含义如果集合A是全集U的子集,那么,由U中不属于A的所有兀素组成的集合叫做A在全集U中的补集.强调强调表示记忆表示集合A在全集U中的补集记作eUA,读作“A在U中的方法补集”即eUAx|xU且xA的书如果从上下文看全集U是明确的,特别是当全集U为实写规数集R时,可以省略补集符号中的U,将euA简记为eA,读范性word
展开阅读全文