奥氏体不锈钢管焊接毕业设计论文

上传人:痛*** 文档编号:107896668 上传时间:2022-06-15 格式:DOC 页数:23 大小:491.98KB
返回 下载 相关 举报
奥氏体不锈钢管焊接毕业设计论文_第1页
第1页 / 共23页
奥氏体不锈钢管焊接毕业设计论文_第2页
第2页 / 共23页
奥氏体不锈钢管焊接毕业设计论文_第3页
第3页 / 共23页
点击查看更多>>
资源描述
毕业论文毕业设计论文设计(论文)题目:奥氏体不锈钢管管对接焊接下 达 日 期: 20 12年 12月 3日开 始 日 期: 2012年 12月 4日完 成 日 期: 2013 年 1月 9日指 导 教 师: 王艳芳 学 生 专 业: 焊接技术及自动化 班 级: 焊接1002 学 生 姓 名: 马佳彬 教 研室主任: 材 料 工 程 系奥氏体不锈钢管管对接焊工艺摘要 本论文主要研究奥氏体不锈钢管管对接焊的焊接工艺及简单的工装,主要采用的焊接方法是钨极氩弧焊(TIG)焊接。由于0Cr18Ni9奥氏体不锈钢焊缝及热影响区裂纹敏感性大,及接头容易产生晶间腐蚀,所以在制定焊接工艺时就要针对这一问题作出相应的预防措施。通过焊后对焊缝的检验确定本次奥氏体不锈钢管管对接的焊接工艺基本上还是比较完善的,能满足使用要求。 关键词:奥氏体不锈钢;焊接工艺;晶间腐蚀Austenitic stainless steel pipe butt welding processAbstractThis paper mainly studies the austenitic stainless steel pipe butt welding and simple Tooling, mainly by welding method is tungsten argon arc welding ( TIG ). As a result of the austenitic stainless steel 0Cr18Ni9 weld heat affected zone and crack sensitivity, and joints are prone to intergranular corrosion, so the welding time to aim at this problem make corresponding preventive measures. By welding after the inspection of welding the austenitic stainless steel pipe butt welding process basically is relatively perfect, and can meet the use requirements.Key words: austenitic stainless steel; welding technology; intergranular corrosion目录绪论1一 奥氏体不锈钢的牌号、成分及力学性能的分析2二 工装与焊接41、材料及尺寸42、操作图样及技术要求43、焊前准备54、焊接过程6三 奥氏体不锈钢焊接常见问题101、焊接热裂纹102、焊接接头的晶间腐蚀133、应力腐蚀开裂(SCC)16四 焊后检验17五 密封性试验17参考文献17致 谢19绪论进入20世纪90年代以来,我国不锈钢的消费量增长很快。1997年我国不锈钢的表观消费量超过了 100万1,2001年达到220万t,居世界第一位。以后逐年大幅度增长,2005年达到522万t。连续5年成为世界上最大的不锈钢消费国家。不锈钢由于其优良的耐腐蚀性能,在我国的经济建设中占有举足轻重的地位,被广泛应用于船舶、车辆、汽车、宇航、桥梁、建筑、压力容器、贮罐、建筑机械、管线及家电设备等行业。在不锈钢加工工艺中,焊接是最主要的必不可少的加工技术。焊接件的数量、品种、规格在不断地增加,对焊接工艺和质量的要求也越来越高。而且随着技术的引进,国外的不少不锈钢的品种和牌号、新焊接材料、新焊接技术、新焊接工艺在国内市场所占的比重逐步增加,因此对国内的焊接技术人员也提出了许多新的问题。焊接性是指同种金属材料或异种金属材料在焊接加工条件下,能够形成具备一定使用性能的焊接接头的特性。焊接性应包括两个方面的意义:一是结合性,即一定的金属材料在指定的焊接工艺条件下,对煶接缺陷的敏感性,即工艺焊接性;二是使用性能,是金属材料在指定的焊接条件下所形成的焊接接头适用使用条件的程度,也称使用焊接性。焊接性与材料、工艺、结构和使用条件等因素都有密切的关系,不能脱离开这些因素而单纯从材料本身的性能来评价焊接性。与国外相比,我国的不锈钢焊接技术水平存在一定的差距,主要表现在焊接设备(国内目前无一家具有自主知识产权的先进设备生产厂家,高端焊机完全依赖进口,中低端焊机厂家之间竞争激烈,在技术研发方面投入少)、焊接工艺(大部分焊接工程技术人员及焊工不熟悉不锈钢的焊接)和焊接材料(焊材研发能力弱,优质焊材主要靠进口)等方面。另外,我国执行的标准同国外相比,也比较落后,因此,迫切需要我们加强不锈钢焊接工艺与材料的研究工作,致力于产品质量的提高,保证产品质量的稳定,迅速缩小与国外先进水平的差距。同时加强对高品质特种不锈钢焊材的研制开发与生产,适应市场的需求,降低成本,增强自身的竞争能力,为我国的经济建设做贡献。一 奥氏体不锈钢的牌号、成分及力学性能的分析奥氏体钢以铬镍为主要合金元素。一般奥氏体钢的含铬量为W Cr=18,进一步增加含铬量可提高其对一般酸的耐腐蚀能力。奥氏体不锈钢主要靠镍来完成奥氏体化,在此基础上,有时用少量锰与氮部分取代镍。在奥氏体钢中可通过加入钛或铌,或把含碳量Wc降至0.03及以下,达到碳的稳定化,以防止出现晶间腐蚀。加入钼可以提高铬镍奥氏体不锈钢的抗点状腐蚀和缝隙腐蚀能力。常用奥氏体钢的牌号与成分见表1-1。力学性能见表1-2。表1-1 常用奥氏体钢的牌号与化学成分w()牌号CSiMnPSNiCr其他0Cr18Ni90.081.002.000.0350.0308.0011.0018.0020.0000Cr19Ni110.031.002.000.0350.0309.0013.0018.0020.000Cr18Ni12Mo3Ti0.081.002.000.0350.03011.0014.0016.0019.00Mo:2.503.50Ti:5XC0.700Cr18Ni11Ti0.081.002.000.0350.0309.0013.0018.0020.00Ti5Xc0Cr19Ni9N0.081.002.500.0350.0307.0010.5018.0020.00N:0.100.2500Cr18Ni10N0.031.002.500.0350.0308.5011.5017.0019.00N:0.120.220Cr25Ni200.081.002.000.0350.03019.0022.0024.0026.0000Cr18Ni14Mo2Cu20.031.002.000.0350.03012.0016.0017.0019.00Mo:1.202.75Cu:1.002.502Cr21Ni12N0.150.280.751.251.001.600.0350.03010.5012.5020.0022.00N:0.150.301Cr18Ni90.081.002.000.0350.0308.0011.0017.0019.003Cr18Mn12Si2N0.220.301.402.2010.5012.500.0600.03017.0019.00N:0.220.330Cr23Ni130.081.002.000.0350.03012.0015.0022.0024.00表1-2 常用奥氏体钢的热处理制度及力学性能牌号热处理0.2MPabMPas0Cr18Ni9固溶10101150快冷205520406000Cr19Ni11固溶10101150快冷17748040600Cr18Ni12Mo3Ti固溶10001100快冷20553040550Cr18Ni11Ti固溶9801150快冷20552040500Cr19Ni9N固溶10101150快冷27555035502Cr21Ni12N固溶10101150快冷时效750800空冷43082026200Cr25Ni20固溶10301150快冷205520405000Cr18Ni14Mo2Cu2固溶10101150快冷1774000406000Cr18Ni10N固溶10101150快冷24555040501Cr18Ni9固溶10101150快冷20552040603Cr18Mn12Si2N固溶11001150快冷39068035450Cr23Ni13固溶10301180快冷2055204060二 工装与焊接1、材料及尺寸: 0Cr18Ni9奥氏体不锈钢管168长1050mm、长850mm2、操作图样及技术要求技术要求:1、 单面焊双面成型技术2、 焊接过程中,余高和熔宽尺寸自定3、 焊丝表面必须去除油、锈等污物4、 焊前清理坡口,露出金属光泽3、焊前准备 3.1、下料:管子材料必须采用机械加工的方法进行管段截取,端面不可用燃气割刀开坡口或加工焊接表面。这里采用切割机下料,分别切168mm x1050mm x10mm(0Cr18Ni9)和168mm x850mm x10mm(0Cr18Ni9)钢管各一根 3.2打磨坡口:为了保证管子根部焊缝成型,采用钨极氩弧焊接的管子,当管壁大于4mm时,管子应开坡口,壁厚4mm,可不开坡口。这里采用角磨机打磨两根管子的坡口,坡口角度60度,并打磨坡口两侧2030mm处使其露出金属光泽(管子里面坡口两侧也要打磨使其露出金属光泽) 3.3焊前清理 :为了保证焊接质量,焊前应将坡口两侧2030mm范围内的焊件表面清理干净,如有油污,可用丙酮或酒精等有机溶剂擦拭。对表面质量要求特别高的焊件,应在适当范围内涂上用白粉调制的糊桨,以防飞溅金属损伤表面。 3.4表面防护: 在搬运、坡口制备、装配及定位焊过程中,应注意避免损伤钢材表面,以免使产品的耐蚀性降低。如不允许用利器划伤钢材表面,不允许随意到处引弧等。 3.5设备及焊接材料: ZX7-400ST逆变式手弧/氩弧焊机() 氩气瓶及氩气流量调节器 铈钨极(直径2.5) 气冷式焊枪 焊接材料:不锈钢焊丝ER347(H08Cr20Ni10Nb)2.5 角向磨光机、切割机等辅助设备4、焊接过程4.1 焊件装配 在装配胎具上进行装配及定位焊,如图:4.1.1 定位焊焊材与正式焊缝使用的一致,定位焊质量要求与工件焊缝的相同,高度与宽度不得超过正式焊缝,反面成形与焊缝一致。定位焊上如有缺陷要将其打磨掉,决不能留在焊缝中,定位焊应不少于3点,定位焊长约10mm左右 4.1.2 焊接 焊接方法的选择:奥氏体不锈钢具有较好的焊接性,可以采用焊条电弧焊、埋弧焊、钨极氩弧焊、熔化极气体保护焊、等离子弧焊等进行焊接。 焊条电弧焊焊条电弧焊是最常用的焊接方法,具有操作灵活、方便等优点。为提高焊缝金属抗裂纹能力,宜选择碱性药皮的焊条;对于耐蚀性要求高、表面成形要求好的焊缝,宜选用工艺性良好的钛钙型药皮的焊条。 氩弧焊氩弧焊是焊接奥氏体不锈钢的理想方法,焊接过程中合金元素烧损很小,焊缝表面洁净无渣,焊缝成形好。此外,由于焊接热输入较低,特别适宜对过热敏感的奥氏体不锈钢的焊接。 埋弧焊埋弧焊是一种高效的焊接方法,特别是热输入大,熔池尺寸较大,冷却速度和凝固速度慢,因此焊接热裂纹敏感性增大。埋弧焊对母材稀释率变化范围大(1075),这就会对焊缝金属成分产生重大影响,关系到焊缝组织中铁素体含量的控制。 等离子弧焊等离子弧焊属于惰性气体保护的熔化焊方法,由于等离子弧能量集中、焊件加热范围小、焊接速度快、热能利用率高及热影响区窄等特点,对提高接头的耐蚀性,改善接头组织非常有利。本次管管对接我们采用钨极氩弧焊 焊接工艺要点本次管管对接分三层三道焊接,详细参数如下:表2-1 焊接工艺参数焊接层次焊接电流/A电弧电压/V氩气流量/(L/min)钨极直径/mm焊丝直径/mm喷嘴直径/mm打底焊9018122.52.512填充焊11020122.52.512盖面焊11020122.52.512 为了保证焊缝质量我们应在焊接时给管子内部不断充氩气,并保证管子两头都要密闭。具体充氩气方法如下:I 小口径管充氩方法:对于小直径管道,可采用正管充气,这种充气方法比较简单,但随着管线长度增加,氩气浪费较大,一般情况下,采用分段组焊,少量的中间接头焊接用海绵或对母材不产生腐蚀的材料(如可熔纸)把所焊管口两侧堵住(一般距焊口两侧200300mm),可熔纸在水压试验时可自行熔化II 整管充氩的方法:将管子的一端用软木塞塞死(木塞中心应打上1个直径35mm的孔,主要防止收弧时,因管内氩气压力过大,引起接头收弧困难),在管子的另一端充入氩气III 大直径管道充氩方法:对于直径大于89mm的管道,为节约氩气,可采用局部充氩的方法。具体做法是在焊前,将木制堵板加在焊口的附近两侧,形成隔离充气小室(一般把堵板放在离焊口各100150mm处),一端向充气室充气,并从另一堵板中心小孔出气,为了减少管内氩气从对口间歇处流失,降低保护效果,焊接前可沿焊口间隙贴上胶带,边焊接边揭去胶带。为了补充气室漏去的氩气,焊接全过程都应不间断的向管内充氩,氩气流量应适当。流量过小,氩气保护不好,焊缝背面容易氧化。流量过大,焊接时产生涡流带入空气,保护效果也会变坏,同时会引起焊缝的根部内凹等缺陷,影响焊接质量。一般充氩流量控制在68L/min。另外应特别注意的是,应该在充气时将充气室或管内空气排净后,焊接才能进行,否则影响焊接质量。局部充气方法:堵板制作要求在焊接前将2块堵板事先放置于管子的两侧,扣好绳子,焊接完成后,把2块堵板从管内抽出。本次管管对接采用大直径局部充氩方法 焊前不预热由于奥氏体不锈钢具有较好的塑性,冷裂纹倾向较小,因此焊前不必预热。多层焊时要避免道间温度过高,一般应冷却到100以下再焊下一层;否则接头冷却速度慢,将促使产生碳化铬而造成耐晶间腐蚀性下降。在工件钢性极大的情况下,有时为了避免裂纹的产生,不得已进行焊前预热。防止接头过热具体措施有:焊接电流比焊低碳钢时小1020,短弧快速焊,直线运条,减少起弧、收弧次数,尽量避免重复加热,强制冷却焊缝(加铜垫板,喷水冷却等)。 要保证焊件表面完好无损焊件表面损伤是产生腐蚀的根源,避免碰撞损伤,尤其避免在焊件表面进行引弧造成局部烧伤等。焊工不要在非焊缝处引弧,以免损伤母材,造成腐蚀。手工电弧焊操作时,最好不作横向摆动,窄焊道,快速,并控制好层间温度,奥氏体钢层间温度60。 所有对接焊缝应完全焊透。采用单面焊双面成形,只要有可能,焊缝应以俯焊位置施焊。焊接中产生的缺陷。如裂纹、端部弧坑,气孔以及凹陷等应及时以予清除。 焊接中断时,如时间过长,表面将被氧化,再续焊时,焊丝的端部应去掉。熄弧时,不能立刻提起焊枪,要注意滞后气体对焊缝的保护作用。焊后热处理奥氏体不锈钢焊接后,原则上不进行热处理。只有焊接接头产生了脆化或要进一步提高其耐蚀能力时,才根据需要选择固溶处理、稳定化处理或消除应力处理。 焊后清理不锈钢焊后,焊缝必须进行酸洗、钝化处理。酸洗的目的是去除焊缝及热影响区表面的氧化皮;钝化的目的是使酸洗的表面重新形成一层无色的致密氧化膜,起到耐蚀作用。常用的酸洗方法有两种:酸液酸洗。分为浸洗法和刷洗法。浸洗法是将焊件在酸洗槽中浸泡2545min,取出后用清水冲净,适用于较小焊件。刷洗法是用刷子或抹布反复刷洗,直到呈白亮色后用清水冲净,适用于大型焊件。酸膏酸洗。适用于大型结构,是将配制好的酸膏敷于结构表面,停留几分钟后,再用清水冲净。酸洗前必须进行表面清理及修补,包括修补表面损伤、彻底清除焊缝表面残渣及焊缝附近表面的飞溅物。钝化在酸洗后进行,用钝化液在部件表面揩一遍,然后用冷水冲洗,再用抹布仔细擦洗,最后用温水冲洗干净并干燥,经钝化处理后的不锈钢制品表面呈白色,具有较好的耐蚀性。操作方法要点: 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。 焊接时钨极端部离焊件距离2 mm左右,焊丝要顺着坡口沿着管子的切点送到熔池的前端,利用熔池的高温将焊丝熔化。电弧引燃后,在坡口一端预热,待金属熔化后立即送第一滴焊丝熔化金属,然后电弧摆到坡口另一端,给送第二滴焊丝熔化金属,使二滴铁水连接形成焊缝的根基,然后电弧作横向摆动,两边稍作停留,焊丝均匀地、断续地送进熔池向前施焊。 在填丝过程中切勿扰乱氩气气流,停弧时注意氩气保护熔池,防止焊缝氧化。 注意焊到后半圈剩一小半时应减小内部保护气体流量到3 L/min,以防止气压过大而使焊缝内凹。三 奥氏体不锈钢焊接常见问题1、焊接热裂纹单相奥氏体不锈钢焊接时,具有较高的热裂纹敏感性,在焊缝及近缝区都有可能出现热裂纹,最常见的是焊缝凝固裂纹,也可能在热影响区(HAZ)或多层焊道间金属出现液化裂纹。1.1、焊接接头产生热裂纹的原因奥氏体不锈钢具有较大的热裂纹敏感性,主要取决于其化学成分、组织与性能特点:(1)化学成分 奥氏体不锈钢中合金元素较多,尤其是含有一定数量的镍,它易与硫、磷等杂质形成低熔点共晶,如Ni-S共晶熔点为645 ,Ni-P共晶元素为880 ,比Fe-S、Fe-P共晶的熔点更低,危害性也更大。其他一些元素如硅、硼、铌等元素,也能形成有害的易熔晶间层,这些低熔点共晶会促使热裂纹的产生。(2)组织 奥氏体不锈钢焊缝易形成方向性强的粗大柱状晶组织,有利于有害杂质元素的偏析,从而促使形成连续的晶间液膜,增加了热裂纹的敏感性。(3)性能 从奥氏体不锈钢的物理性能看,它具有热导率小、线胀系数大的特点,因而在焊接局部加热和冷却条件下,易产生较大的焊接残余拉应力,进一步促进焊接热裂纹的产生。从上述三个方面看,热裂纹是奥氏体不锈钢焊接时比较容易产生的一种缺陷,特别是含铬较高的奥氏体不锈钢更容易产生。因此,奥氏体不锈钢产生热裂纹的倾向要比低碳钢大得多。1.2、防止奥氏体不锈钢产生热裂纹的主要措施(1)冶金措施严格控制焊缝金属中有害杂质元素的含量。钢中镍含量越高,越应该严格控制硫、磷、硼、硒等有害元素的含量。调整焊缝化学成分。加入铁素体元素,使焊缝金属出现奥氏体-铁素体双相组织,能够有效地防止焊缝热裂纹的产生。如18-8钢焊缝组织中有少量铁素体()相存在,则抗裂性能大大提高,如图1-1所示。这是因为相的存在打乱了奥氏体焊缝柱状晶的方向性(如图1-2所示)、细化了晶粒,低熔点的杂质被铁素体分散和隔开,避免了低熔点杂质呈连续网状分布,从而阻碍热裂纹扩展和延伸;相能溶解较多的硫、磷等微量元素,使其在晶界上的数量大为减少,从而提高焊缝抗热裂纹的能力。常用铁素体化的元素有铬、钼、钒等。图1-1 相对含量对焊缝热裂倾向的影响图1-2 相在奥氏体基体上的分布控制焊缝金属中的铬镍比。对于18-8型不锈钢来说,当焊接材料的铬镍比小于1.61时,就易产生热裂纹;而铬镍比达到2.33.2时,就可以防止热裂纹的产生。这一措施的实质也是为保证有一定量的铁素体存在。在焊缝金属中加入少量的铈、锆、钽等微量元素。这些元素可以细化晶粒,也可以减少焊缝对热裂纹的敏感性。上述冶金因素主要是通过选择焊接材料来达到调整焊缝化学成分的目的。目前我国生产的18-8型不锈钢焊条的熔敷金属,都能获得奥氏体-铁素体双相组织。(2)工艺措施 焊接时应尽量减小熔池过热程度,以防止形成粗大的柱状晶。为此焊接时宜采用小热输入及小截面的焊道;多层焊时,道间温度不宜过高,以避免焊缝过热;焊接过程中焊条不允许摆动,采用窄焊缝的操作技术。此外,液化裂纹主要出现在25-20型奥氏体不锈钢的焊接接头中。为防止液化裂纹的产生,除了严格限制母材中的杂质含量、控制母材的晶粒度以外,在工艺上应尽量采用高能量密度的焊接方法、小热输入和提高接头的冷却速度等措施,以减少母材的过热和避免近缝区晶粒的粗化。2、焊接接头的晶间腐蚀有些奥氏体不锈钢的焊接接头,在腐蚀介质中工作一段时间后可能发生局部沿着晶界的腐蚀,一般称此种腐蚀为晶间腐蚀,0Cr18Ni9不锈钢晶间腐蚀,如图1-3所示。根据母材类型和所采用焊接材料与焊接工艺不同,奥氏体不锈钢焊接接头可能发生在焊缝区、HAZ热影响区(6001000)和熔合区,如图1-4所示。 图1-3 0Cr18Ni9不锈钢晶间腐蚀图1-4 奥氏体不锈钢焊接接头a焊缝区 bHAZ热影响区 c熔合区2.1产生晶间腐蚀的原因奥氏体不锈钢焊缝和HAZ热影响区的晶间腐蚀,都与敏化过程使晶界形成贫铬层有关。焊缝产生晶间腐蚀可有两种情况:一种是焊态下已有Cr23C6析出,如多层焊缝的重复加热区域;另一种为接头在焊态下无贫铬层,但焊后经过敏化温度区间,因而具有晶间腐蚀倾向。奥氏体不锈钢在加热到450850 时,对晶间腐蚀最敏感,此温度区间称危险温度区。这是因为当温度低于450时,碳原子活动能力很弱,Cr23C6析出困难不会形成贫铬层;而当温度高于850时,晶粒内部的铬获得了的动能,扩展到晶界,从而使已形成的贫铬层消失;而在450850温度区间内,既有利于Cr23C6的析出,晶粒内部的铬原子又不能扩散到晶界,最容易形成贫铬层,对晶间腐蚀最敏感。当然,如果在450850温度区间加热足够长的时间,晶内的铬原子也可以扩散到晶界使贫铬层消失。 2.2防止焊接接头产生晶间腐蚀的措施 冶金措施使焊缝金属具有奥氏体-铁素体双相组织,其铁素体的体积分数应在412范围内,不仅能提高焊缝金属抗晶间腐蚀的能力和抗应力腐蚀的能力,同时还能提高焊缝金属抗热裂纹的能力。在焊缝金属中渗入比铬更容易与碳结合的稳定化元素,如钛、铌、钽和锆等。一般认为认为钛碳比大于5时,能提高抗晶间腐蚀的能力。试验结果证明,钛碳比大于或等于6.7时才有明显的效果;大于7.8时,才能彻底地改善晶间腐蚀的倾向。这是由于钛优先地与全部的碳结合,消除了晶间的贫铬地带,从而改善了抗蚀性。超低碳有利于防止晶间腐蚀。最大限度地降低碳在焊缝金属中的含量,达到低于碳在不锈钢中室温溶解极限值以下,使碳不可能与铬生成Cr23C6,从根本上消除晶界的贫铬区。碳的质量分数在焊缝金属中小于0.03时,就能提高焊缝金属的抗晶间腐蚀能力。如上所述,为了使焊缝金属中含有恰当的合金元素种类和数量,只有从焊接材料着手,选择满足上述冶金因素条件的焊条、焊剂及焊丝,才能使焊缝金属达到不产生晶间腐蚀的目的。工艺措施选择合适的焊接方法,即选择热输入最小的焊接方法,让焊接接头尽可能地缩短在敏化温度区间停留的时间。对于薄件、小型规则的焊接接头,应选用能量集中的真空电子束焊、等离子弧焊、钨极氩弧焊;对于中等厚度的板材的焊缝,可采用熔化极气体保护焊;而大厚度的板材的焊接,选用埋弧焊、焊条电弧焊为常用的焊接方法,气焊不宜采用。焊接参数应在保证焊缝质量的前提下,采用小的焊接电流,最快的焊接速度。在操作上尽量采用窄焊缝,多道多层焊,并注意每焊完一道焊缝后要等焊接处冷却至室温再进行下一道焊缝的焊接。在施焊过程中,不允许焊条或焊丝摆动;焊接管子采用氩弧焊打底时,可以不加填充材料进行熔焊,在可能的条件下,管内通氩气保护。其作用是保护熔池不易氧化,加快焊缝的冷却速度,有利于背面焊缝的成形。对于接触腐蚀介质的焊缝,在有条件的情况下一定要最后施焊,以减少接触介质焊缝的受热次数。强制焊接区的快速冷却。对于有的规则的焊缝,在可能的条件下焊缝背面可用纯铜垫,在铜垫上通水或通保护气体等方式进行强迫冷却,有利于防止焊接接头的晶间腐蚀,因为快速冷却可以防止贫铬层的形成。进行固溶处理或稳定化处理。奥氏体不锈钢的热处理方法有固溶处理和稳定化处理。固溶处理是把钢加热到10501150,得到成分均匀的单相奥氏体组织,然后快冷,使高温过饱和固溶体组织状态保持到室温。固溶处理后,奥氏体不锈钢具有最低的强度和硬度,最好的耐蚀性,是防止晶间腐蚀的重要手段。出现敏化现象的奥氏体不锈钢可再次用固溶处理来消除。稳定化处理是针对含稳定剂的奥氏体不锈钢而设计的一种热处理工艺。奥氏体不锈钢中加稳定剂(Ti或Nb)的目的是让钢中的碳与Ti或Nb形成稳定的TiC或NbC,而不形成Cr23C6,从而防止晶间腐蚀。稳定化处理加热温度高于Cr23C6的溶解温度,低于TiC或NbC的溶解温度,一般在850900,并保温24h。稳定化处理也可用于消除因敏化加热而产生的晶间腐蚀倾向。3、应力腐蚀开裂(SCC)3.1、应力腐蚀开裂产生原因应力腐蚀开裂是在拉应力和特定腐蚀介质共同作用下而发生的一种破坏形式。随着拉应力的不断加大,发生破坏的时间缩短;当拉应力减小时,腐蚀量也随之减小,甚至不发生破坏。应力腐蚀开裂是奥氏体不锈钢非常敏感且经常发生的腐蚀破坏形式。据有关统计资料表明:应力腐蚀开裂引起的事故占整个腐蚀破坏事故的60以上。奥氏体不锈钢由于导热性差、线胀系数大、屈服点低,焊接时很容易变形,当焊接变形受到限制时,焊接接头中必然会残留较大的焊接残余拉应力,加速腐蚀介质的作用。因此,奥氏体不锈钢焊接接头容易出现应力腐蚀开裂,这是焊接奥氏体不锈钢时最不易解决的问题之一,特别是在化工设备中,应力腐蚀开裂现象经常出现。应力腐蚀开裂的表面特征是:裂纹均发生在焊缝表面上;裂纹多平行且近似垂直焊接方向;裂纹细长并曲折,常常贯穿有黑色点蚀的部位。从表面开始向内部扩展,点蚀往往是裂纹的根源,裂纹通常表现为穿晶扩展,裂纹尖端常出现分枝,裂纹整体为树枝状。严重的裂纹可穿过熔合区进入热影响区。3.2、防止应力腐蚀开裂的措施(1)合理地设计焊接接头。避免腐蚀介质在焊接接头部位聚集,降低或消除焊接接头应力集中。(2)消除或降低焊接接头的残余应力。焊后进行消除应力处理是常用工艺措施,加热温度在850900之间才可得到比较理想的消除应力效果;采用机械方法,如表面抛光、喷丸和锤击来造成表面压应力;结构设计时要尽量采用对接接头,避免十字交叉焊缝,单V形坡口改用Y形坡口等。(3)正确选用材料。选用母材和焊接材料时,应根据介质的特性选用对应力腐蚀开裂敏感性低的材料。四 焊后检验 1、直观检查:焊缝表面不允许有任何肉眼可见的超标缺陷存在:如裂纹、咬边、夹渣、未溶合等现象。 焊接后,焊缝加强高正面0.52mm,背面-0.52mm。 焊接接头处应圆滑过渡 2、RT探伤:焊接接头按JB4730T-2005承压设备无损检测、JB47302-2005的要求进行了RT(射线检测)100 检测,检测设备为x光射线仪XXQ2515,管电压250 kV,管电流15 mA。对接接头内不存在裂纹、未熔合、未焊透和条形缺陷,评片结果为I级。五 密封性试验焊后管子进行水压试验,试验压力为管路工作压力的1.5倍(或按图纸)。不得有泄漏和渗水现象。参考文献1 英若采主编. 熔焊原理及金属材料焊接. 北京:机械工业出版社,2010.2 元四华主编. 工程材料及成形基础. 合肥:中国科技技术大学出版社,2008. 3 雷世明主编. 焊接方法与设备. 北京:机械工业出版社,20084 张兰.我国不锈钢焊接工艺研究现状及进展【J】.山西冶金.106(2):1-5致 谢本课题在选题和研究过程中得到王艳芳老师的悉心指导。王老师多次询问设计进程,并为我指点迷津,帮助我开拓设计思路,精心点拨、热忱鼓励。王老师在工作之余给予我指导,不顾休息,这种舍己为人的精神,永远值得我们学习。且王老师的严谨求实态度和踏踏实实精神,不仅授我以文,而且教我做人,给以终身受益无穷之道。在此,对王老师及焊接教研室全体老师表示感谢!感谢全体老师对我的培养,并向他们表示诚挚的谢意和崇高的敬意。同时也感谢我的大学同学三年来对我学习、生活的关心和帮助,在以后的事业道路上我会更加努力拼搏的。18
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!