资源描述
【精品文档】如有侵权,请联系网站删除,仅供学习与交流三年高考(2014-2016)数学(理)真题分项版解析 专题06 数列.精品文档.三年高考(2014-2016)数学(理)试题分项版解析第六章 数列 一、选择题1. 【2014高考北京理第5题】设是公比为的等比数列,则“”是“为递增数列”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件【答案】D【解析】试题分析:对等比数列,若,则当时数列是递减数列;若数列是递增数列,则满足且,故当“”是”数列为递增数列的既不充分也不必要条件.故选C.考点:等比数列的性质,充分条件与必要条件的判定,容易题.【名师点睛】本题考查充要条件,本题属于基础题,充要条件问题主要命题方法有两种,一种为判断条件是结论的什么条件?第二种是寻求结论成立的某种条件是什么?近几年高考充要条件命题以选填题为主,表面看很简单。但由于载体素材丰富,几何、代数、三角可以随意选材,所以涉及知识较多,需要扎实的基本功,本题以数列有关知识为载体,考查了数列的有关知识和充要条件.2. 【2015高考北京,理6】设是等差数列. 下列结论中正确的是( )A若,则 B若,则C若,则 D若,则【答案】C考点定位:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.【名师点睛】本题考查等差数列的通项公式和比较法,本题属于基础题,由于前两个选项无法使用公式直接做出判断,因此学生可以利用举反例的方法进行排除,这需要学生不能死套公式,要灵活应对,作差法是比较大小常规方法,对判断第三个选择只很有效.3. 【2016高考新课标1卷】已知等差数列前9项的和为27,则 ( )(A)100 (B)99 (C)98 (D)97【答案】C【解析】试题分析:由已知,所以故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.4. 【2016高考浙江理数】如图,点列An,Bn分别在某锐角的两边上,且,().若( )A是等差数列 B是等差数列C是等差数列 D是等差数列【答案】A【解析】考点:等差数列的定义【思路点睛】先求出的高,再求出和的面积和,进而根据等差数列的定义可得为定值,即可得是等差数列5. 【2016年高考四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.120.05,lg 1.30.11,lg20.30)( A)2018年 (B)2019年 (C)2020年 (D)2021年【答案】B【解析】试题分析:设第年的研发投资资金为,则,由题意,需,解得,故从2019年该公司全年的投入的研发资金超过200万,选B.考点:等比数列的应用.【名师点睛】本题考查等比数列的实际应用在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论6. 【2015高考浙江,理3】已知是等差数列,公差不为零,前项和是,若,成等比数列,则( )A. B. C. D. 【答案】B.【解析】等差数列,成等比数列,故选B.【考点定位】1.等差数列的通项公式及其前项和;2.等比数列的概念【名师点睛】本题主要考查了等差数列的通项公式,等比数列的概念等知识点,同时考查了学生的运算求解能力,属于容易题,将,表示为只与公差有关的表达式,即可求解,在解题过程中要注意等等差数列与等比数列概念以及相关公式的灵活运用.7.【2014高考重庆理第2题】对任意等比数列,下列说法一定正确的是( )成等比数列 成等比数列成等比数列 成等比数列【答案】D【解析】试题分析:因为数列为等比数列,设其公比为,则所以,一定成等比数列,故选D.考点:1、等比数列的概念与通项公式;2、等比中项.【名师点睛】本题考查了等比数列的概念与通项公式,等比数列的性质,本题属于基础题,利用下标和相等的两项的积相等更能快速作答.8. 【2015高考重庆,理2】在等差数列中,若=4,=2,则=()A、-1 B、0 C、1 D、6【答案】B【解析】由等差数列的性质得,选B.【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题.9.【2014福建,理3】等差数列的前项和,若,则( ) 【答案】C【解析】试题分析:假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.【名师点睛】本题主要考查等差数列的通项公式及简单的计算问题,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.10.【2015高考福建,理8】若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( )A6 B7 C8 D9【答案】D【考点定位】等差中项和等比中项【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题11. 【2014辽宁理8】设等差数列的公差为d,若数列为递减数列,则( )A B C D【答案】C【解析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列. 【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差数列的通项,利用是递减数列,确定得到,得到结论.本题是一道基础题.在考查等差数列等基础知识的同时,考查考生的计算能力.12. 【2015课标2理4】已知等比数列满足a1=3, =21,则 ( )A21 B42 C63 D84【答案】B【解析】设等比数列公比为,则,又因为,所以,解得,所以,故选B【考点定位】等比数列通项公式和性质【名师点睛】本题考查等比数列的通项公式和性质,通过求等比数列的基本量,利用通项公式求解,若注意到项的序号之间的关系,则可减少运算量,属于基础题二、填空题1. 【2016高考浙江理数】设数列an的前n项和为Sn.若S2=4,an+1=2Sn+1,nN*,则a1= ,S5= .【答案】 【解析】试题分析:,再由,又,所以考点:1、等比数列的定义;2、等比数列的前项和【易错点睛】由转化为的过程中,一定要检验当时是否满足,否则很容易出现错误2. 【2014高考北京理第12题】若等差数列满足,则当 时,的前项和最大.【答案】考点:等差数列的性质,前项和的最值,容易题.【名师点睛】本题考查等差数列的性质及等差数列的通项公式及前项和公式,本题属于基础题,由于题目提供a7a8a90,a7a100,推出,从而说明数列an的前8项和最大.这个题目命题角度新颖,不需死套公式,重视对知识的理解和对知识本质的考查.3.【2016年高考北京理数】已知为等差数列,为其前项和,若,则_.【答案】6【解析】试题分析:是等差数列,故填:6考点:等差数列基本性质.【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.4. 【2014高考广东卷.理.13】若等比数列的各项均为正数,且,则 .【答案】.【解析】由题意知,所以,因此,因此.【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题.【名师点晴】本题主要考查的是等比数列的性质和对数的基本运算,属于中等偏难题解题时要抓住关键字眼“正数”,否则很容易出现错误解本题需要掌握的知识点是等比数列的性质和对数的基本运算,即等比数列中,若(、),则,(,)5. 【2015高考广东,理10】在等差数列中,若,则= .【答案】【解析】因为是等差数列,所以,即,所以,故应填入【考点定位】等差数列的性质【名师点睛】本题主要考查等差数列性质及其简单运算和运算求解能力,属于容易题,解答此题关键在于熟记,及其熟练运用6. 【2016高考新课标1卷】设等比数列满足a1+a3=10,a2+a4=5,则a1a2 an的最大值为 【答案】考点:等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做. 7. 【2016高考江苏卷】已知是等差数列,是其前项和.若,则的值是 .【答案】【解析】由得,因此考点:等差数列性质【名师点睛】本题考查等差数列基本量,对于特殊数列,一般采取待定系数法,即列出关于首项及公差的两个独立条件即可.为使问题易于解决,往往要利用等差数列相关性质,如及等差数列广义通项公式8. 【2014江苏,理7】在各项均为正数的等比数列中,若,则的值是 .【答案】4【解析】设公比为,因为,则由得,解得,所以【考点定位】等比数列的通项公式【名师点晴】在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算9. 【2015江苏高考,11】数列满足,且(),则数列的前10项和为 【答案】【解析】由题意得:所以【考点定位】数列通项,裂项求和【名师点晴】由数列的递推公式求通项公式时,若递推关系为an1anf(n)或an1f(n)an,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,注意:有的问题也可利用构造法,即通过对递推式的等价变形,转化为特殊数列求通项数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.10. 【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 【答案】【解析】设数列的首项为,则,所以,故该数列的首项为,所以答案应填:【考点定位】等差中项【名师点晴】本题主要考查的是等差中项,属于容易题解题时一定要抓住重要字眼“中位数”和“等差数列”,否则很容易出现错误解本题需要掌握的知识点是等差中项的概念,即若,成等差数列,则称为与的等差中项,即11.【2015高考新课标2,理16】设是数列的前n项和,且,则_【答案】【考点定位】等差数列和递推关系【名师点睛】本题考查数列递推式和等差数列通项公式,要搞清楚项与的关系,从而转化为与的递推式,并根据等差数列的定义判断是等差数列,属于中档题12. 【2014,安徽理12】数列是等差数列,若构成公比为的等比数列,则_【答案】【解析】试题分析:成等比,令,则,即,即,考点:1等差,等比数列的性质【名师点睛】对于等差数列与等比数列综合考查的问题,要做到:熟练掌握等差或等比数列的性质,尤其是,则(等差数列),(等比数列);注意在平时提高自己的运算求解能力,尤其是换元法在计算题中的应用;要熟练掌握数列中相关的通项公式,前项和公式等.13. 【2015高考安徽,理14】已知数列是递增的等比数列,则数列的前项和等于 .【答案】【考点定位】1.等比数列的性质;2.等比数列的前项和公式.【名师点睛】对于等差数列与等比数列综合考查的问题,要做到:熟练掌握等差或等比数列的性质,尤其是,则(等差数列),(等比数列);注意题目给定的限制条件,如本题中“递增”,说明;要熟练掌握数列中相关的通项公式,前项和公式等.14. 【2014天津,理11】设是首项为,公差为的等差数列,为其前项和若成等比数列,则的值为_【答案】【解析】试题分析:依题意得,解得考点:1等差数列、等比数列的通项公式;2等比数列的前项和公式【名师点睛】本题考查等差数列的通项公式和前项和公式,本题属于基础题,利用等差数列的前项和公式表示出然后依据成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前项和公式通过列方程或方程组就可以解出.15. 【2015湖南理14】设为等比数列的前项和,若,且,成等差数列,则 .【答案】.【解析】试题分析:,成等差数列,又等比数列,.【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.三、解答题1. 【2016高考新课标2理数】为等差数列的前项和,且记,其中表示不超过的最大整数,如()求;()求数列的前1 000项和【答案】(), ;()1893.【解析】试题分析:()先用等差数列的求和公式求公差,从而求得通项,再根据已知条件表示不超过的最大整数,求;()对分类讨论,再用分段函数表示,再求数列的前1 000项和试题解析:()设的公差为,据已知有,解得所以的通项公式为()因为所以数列的前项和为考点:等差数列的的性质,前项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.于是,BmAmdm211,Bm1minam,Bm2.故dm1Am1Bm1220,与dm11矛盾所以对于任意n1,有an2,即非负整数列an的各项只能为1或2.因为对任意n1,an2a1,所以An2.故BnAndn211.因此对于任意正整数n,存在m满足mn,且am1,即数列an有无穷多项为1.考点定位:本题考查新定义信息题,考查学生对新定义的理解能力和使用能力。【名师点睛】本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,题目给出新的定义:an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2,的最小值记为Bn,dnAnBn ,对于数列an给出这样一个新的定义,首先要理解定义,题目的第一步,前一项的最大值为2,第一项后面的项的最小值为1,即,则,同理求出,通过第一步的计算应用新定义,加深对定义的认识进入第二步就容易一些了,第二步证明充要条件、第三步的证明就是在第一步的基础上的深化研究,毕竟是一个新的信息题,在一个全新的环境下进行思维,需要在原有的知识储备,还需要严密的逻辑思维和分析问题与解决问题的能力,有得分的机会,但得满分较难.2. 【2014高考广东卷.理.19】 (本小题满分14分)设数列的前项和为,满足,且.(1)求.的值;(2)求数列的通项公式.【答案】(1),;(2).(2)由题意得,由(1)知,猜想,假设当时,猜想成立,即,则有,则当时,有,这说明当时,猜想也成立,由归纳原理知,对任意,.【考点定位】本题考查利用与的关系来考查数列的通项的求解,主要考查数学归纳法的应用,属于中等题.【名师点晴】本题主要考查的是数列的通项公式,属于中等题本题通过计算,的值猜想数列的通项公式,利用数学归纳法进行证明,可得数列通项公式用数学归纳法证明时一定要注意当时猜想也成立的推理,否则很容易出现错误3. 【2016高考山东理数】(本小题满分12分)已知数列 的前n项和Sn=3n2+8n,是等差数列,且 ()求数列的通项公式;()令 求数列的前n项和Tn.【答案】();().()由()知,又,得,两式作差,得所以考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.4.【2015高考广东,理21】数列满足, (1) 求的值; (2) 求数列前项和; (3) 令,证明:数列的前项和满足【答案】(1);(2);(3)见解析【解析】(1)依题, ;(2)依题当时, ,又也适合此式, , 数列是首项为,公比为的等比数列,故;(3)依题由知, ,记,则, 在上是增函数,又即,又且时, 即, ,即有, ,即【考点定位】前项和关系求项值及通项公式,等比数列前项和,不等式放缩【名师点睛】本题主要考查前项和关系求项值及通项公式,等比数列前项和,不等式放缩等,转化与化归思想的应用和运算求解能力,属于高档题,此题(1)(2)问难度不大,但第(3)问难度较大,首先应能求得,并由得到,再用构造函数()结合不等()放缩方法或用数学归纳法证明5. 【 2014湖南20】已知数列满足,.(1)若为递增数列,且成等差数列,求的值;(2)若,且是递增数列,是递减数列,求数列的通项公式. 【答案】(1) (2) 或【解析】试题解析:(1)因为数列为递增数列,所以,则,分别令可得,因为成等差数列,所以或,当时,数列为常数数列不符合数列是递增数列,所以.(2)由题可得,因为是递增数列且是递减数列,所以且,则有,因为(2)由题可得,因为是递增数列且是递减数列,所以且,两不等式相加可得,又因为,所以,即,同理可得且,所以,则当时,这个等式相加可得.当时, ,这个等式相加可得,当时,符合,故综上.【考点定位】叠加法 等差数列 等比数列 数列单调性【名师点睛】本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大6. 【2016高考江苏卷】(本小题满分16分)记.对数列和的子集T,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.【答案】(1)(2)详见解析(3)详见解析【解析】试题分析:(1)根据及时定义,列出等量关系,解出首项,根据等比数列通项公式写出通项公式(2)数列不等式证明,一般是以算代征,而非特殊数列一般需转化到特殊数列,便于求和,本题根据子集关系,先进行放缩为一个等比数列,再利用等比数列求和公式得(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设则因此由,因此中最大项必在A中,由(2)得,(2)为(3)搭好台阶,只不过比较隐晦,需明晰其含义.(3)下面分三种情况证明.若是的子集,则.若是的子集,则.若不是的子集,且不是的子集.令,则,.于是,进而由,得.设是中的最大数,为中的最大数,则.由(2)知,于是,所以,即.又,故,从而,故,所以,即.综合得,. 考点:等比数列的通项公式、求和【名师点睛】本题三个难点,一是数列新定义,利用新定义确定等比数列首项,再代入等比数列通项公式求解,二是利用放缩法求证不等式,放缩目的,是将非特殊数列转化为特殊数列,从而可利用特殊数列性质,以算代征,三是结论含义的应用,实质又是一个新定义,只不过是新定义的性质应用.7.【2014江苏,理20】设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.(1)若数列的前项和为,证明:是“数列”.(2)设是等差数列,其首项,公差,若是“数列”,求的值;(3)证明:对任意的等差数列,总存在两个“数列” 和,使得成立.【答案】(1)详见解析;(2);(3)详见解析【解析】(1)首先,当时,所以,所以对任意的,是数列中的项,因此数列是“数列”(2)由题意,数列是“数列”,则存在,使,由于,又,则对一切正整数都成立,所以(3)首先,若(是常数),则数列前项和为是数列中的第项,因此是“数列”,对任意的等差数列,(是公差),设,则,而数列,都是“数列”,证毕【考点定位】(1)新定义与数列的项,(2)数列的项与整数的整除;(3)构造法【名师点晴】在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解;解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略.8. 【2015江苏高考,20】(本小题满分16分)设是各项为正数且公差为d的等差数列(1)证明:依次成等比数列;(2)是否存在,使得依次成等比数列,并说明理由;(3)是否存在及正整数,使得依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在【解析】试题分析(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:,无解,所以不存在(3)同(2)先令将二元问题转化为一元,为降次,所以两边取对数,消去n,k得到关于t的一元方程,从而将方程的解转化为研究函数零点情况,这个函数需要利用二次求导才可确定其在上无零点试题解析:(1)证明:因为(,)是同一个常数,所以,依次构成等比数列(2)令,则,分别为,(,)假设存在,使得,依次构成等比数列,则,且令,则,且(,),化简得(),且将代入()式,则显然不是上面方程得解,矛盾,所以假设不成立,因此不存在,使得,依次构成等比数列化简得,且再将这两式相除,化简得()令,则令,则令,则令,则由,知,在和上均单调故只有唯一零点,即方程()只有唯一解,故假设不成立所以不存在,及正整数,使得,依次构成等比数列【考点定位】等差、等比数列的定义及性质,函数与方程【名师点晴】解决等差数列与等比数列的综合问题,关键是理清两个数列的关系如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解9. 【2015高考山东,理18】设数列的前n项和为.已知.(I)求的通项公式;(II)若数列满足,求的前n项和.【答案】(I); (II).【解析】(I)因为 所以, ,故 当 时, 此时, 即 所以, (II)因为 ,所以 当 时, 所以 当 时, 所以两式相减,得 所以经检验, 时也适合,综上可得: 【考点定位】1、数列前 项和 与通项 的关系;2、特殊数列的求和问题.【名师点睛】本题考查了数列的基本概念与运算,意在考查学生的逻辑思维能力与运算求解能力,思维的严密性和运算的准确性,在利用与通项的关系求的过程中,一定要注意 的情况,错位相减不法虽然思路成熟但也对学生的运算能力提出了较高的要求.10. 【2016高考天津理数】已知是各项均为正数的等差数列,公差为,对任意的是和的等差中项.()设,求证:是等差数列;()设 ,求证:【答案】()详见解析()详见解析【解析】试题分析:()先根据等比中项定义得:,从而,因此根据等差数列定义可证:() 对数列不等式证明一般以算代证先利用分组求和化简,再利用裂项相消法求和,易得结论.考点:等差数列、等比中项、分组求和、裂项相消求和【名师点睛】分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组求和法求an的前n项和(2)通项公式为an的数列,其中数列bn,cn是等比数列或等差数列,可采用分组求和法求和11.【2014山东.理19】(本小题满分12分)已知等差数列的公差为2,前项和为,且成等比数列.()求数列的通项公式;()令,求数列的前项和.【答案】(I).(II),(或)【解析】(II)当n为偶数时,当n为奇数时,所以,(或)试题解析:(I)因为,由题意,得,解得,所以.(II)当n为偶数时,当n为奇数时,所以,(或)【名师点睛】本题考查等差数列的通项公式、等差数列及等比数列的求和公式、“裂项相消法”等.求等差数列的通项公式,主要是要运用已知条件,建立首项a1,公差为d的方程组.数列的求和问题,基本解法有“分组求和法”、“错位相减法”、“裂项相消法”.本题是一道能力题.在考查等差数列等基础知识、基本方法的同时,考查考生的计算能力、转化与化归思想及分类讨论思想.12. 【2016高考新课标3理数】已知数列的前n项和,其中(I)证明是等比数列,并求其通项公式;(II)若 ,求【答案】();()【解析】试题分析:()首先利用公式,得到数列的递推公式,然后通过变换结合等比数列的定义可证;()利用()前项和化为的表达式,结合的值,建立方程可求得的值()由()得,由得,即,解得考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明(常数);(2)中项法,即证明根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解13. 【2015高考陕西,理21】(本小题满分12分)设是等比数列,的各项和,其中,(I)证明:函数在内有且仅有一个零点(记为),且;(II)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较与的大小,并加以证明【答案】(I)证明见解析;(II)当时, ,当时,证明见解析【解析】试题解析:(I),则所以在内至少存在一个零点.又,故在内单调递增,所以在内有且仅有一个零点.因为是的零点,所以,即,故.(II)解法一:由题设,设当时,当时,若,若,所以在上递增,在上递减,所以,即.综上所述,当时, ;当时解法二 由题设,当时, 当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,在上递减;当,在上递增.所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,所以,令当时, ,所以.当时, 而,所以,.若,当,从而在上递减,在上递增.所以,所以当又,故综上所述,当时,;当时.考点:1、等比数列的前项和公式;2、零点定理;3、等差数列的前项和公式;4、利用导数研究函数的单调性.【名师点晴】本题主要考查的是等比数列的前项和公式、零点定理、等差数列的前项和公式和利用导数研究函数的单调性,属于难题解题时一定要抓住重要字眼“有且仅有一个”,否则很容易出现错误证明函数仅有一个零点的步骤:用零点存在性定理证明函数零点的存在性;用函数的单调性证明函数零点的唯一性有关函数的不等式,一般是先构造新函数,再求出新函数在定义域范围内的值域即可14. 【2014新课标,理17】(本小题满分12分)已知数列满足=1,.()证明是等比数列,并求的通项公式;()证明:.【解析】:()证明:由得,所以,所以是等比数列,首项为,公比为3,所以,解得.【考点定位】1.等比数列;2.等比数列的前n项和公式;3.放缩法.【名师点睛】本题考查了数列的概念,递推数列,等比数列的定义、通项公式、等比数列的前n项和公式,放缩法证明不等式,属于中档题目,本题体现了化归与转化的基本数学思想方法,注意放缩的适度.15【2015高考四川,理16】设数列的前项和,且成等差数列. (1)求数列的通项公式; (2)记数列的前n项和,求得成立的n的最小值.【答案】(1);(2)10.【解析】(1)由已知,有,即.从而.又因为成等差数列,即.所以,解得.所以,数列是首项为2,公比为2的等比数列.故.【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n项和公式等基础知识,考查运算求解能力.【名师点睛】凡是有与间的关系,都是考虑消去或(多数时候是消去,得与间的递推关系).在本题中,得到与间的递推关系式后,便知道这是一个等比数列,利用等比数列的相关公式即可求解.等差数列与等比数列是高考中的必考内容,多属容易题,考生应立足得满分.16. 【2016高考浙江理数】设数列满足,(I)证明:,;(II)若,证明:,【答案】(I)证明见解析;(II)证明见解析【解析】试题分析:(I)先利用三角形不等式得,变形为,再用累加法可得,进而可证;(II)由(I)可得,进而可得,再利用的任意性可证试题解析:(I)由得,故,所以,因此(II)任取,由(I)知,对于任意,故从而对于任意,均有由的任意性得 否则,存在,有,取正整数且,则,与式矛盾综上,对于任意,均有考点:1、数列;2、累加法;3、证明不等式【思路点睛】(I)先利用三角形不等式及变形得,再用累加法可得,进而可证;(II)由(I)的结论及已知条件可得,再利用的任意性可证17. 【2014四川,理19】设等差数列的公差为,点在函数的图象上().(1)若,点在函数的图象上,求数列的前项和;(2)若,函数的图象在点处的切线在轴上的截距为,求数列的前 项和.【答案】(1);(2).【解析】试题分析:据题设可得,.(1),由等差数列的前项和公式可得.(2)首先可求出在处的切线为,令得,由此可求出,.所以,这个数列用错位相消法可得前 项和.试题解答:据题设可得.(1),所以.(2)将求导得,所以在处的切线为,令得,所以,.所以,其前项和两边乘以2得:得:,所以.【考点定位】等差数列与等比数列.【名师点睛】已知数列是等差数列,只需求得首项与公差即可;考生在解决此题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的项是一个等比数列18.【2015高考新课标1,理17】为数列的前项和.已知0,=.()求的通项公式;()设 ,求数列的前项和.【答案】()()【解析】试题分析:()先用数列第项与前项和的关系求出数列的递推公式,可以判断数列是等差数列,利用等差数列的通项公式即可写出数列的通项公式;()根据()数列的通项公式,再用拆项消去法求其前项和.试题解析:()当时,因为,所以=3,当时,=,即,因为,所以=2,所以数列是首项为3,公差为2的等差数列,所以=;()由()知,=,所以数列前n项和为= =.【考点定位】数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法【名师点睛】已知数列前n项和与第n项关系,求数列通项公式,常用将所给条件化为关于前n项和的递推关系或是关于第n项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.19. 【2014课标,理17】已知数列的前项和为,其中为常数,(I)证明:;(II)是否存在,使得为等差数列?并说明理由.【答案】(I)详见解析;(II)存在,.【解析】因此存在,使得为等差数列【考点定位】1、递推公式;2、数列的通项公式;3、等差数列【名师点睛】本题考查了递推公式、等差数列的通项公式及其前n项和公式和概念、等差数列的充要条件等基础知识与基本技能方法, 考查了考生运用数列的有关知识解题的能力和观察、分析、归纳、猜想及用数学归纳法证明的能力,同时考查了考生的推理能力和计算能力、分类讨论的思想方法.20. 【2016年高考北京理数】(本小题13分) 设数列A: , , ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出的所有元素;(2)证明:若数列A中存在使得,则 ;(3)证明:若数列A满足- 1(n=2,3, ,N),则的元素个数不小于 -.【答案】(1)的元素为和;(2)详见解析;(3)详见解析.【解析】试题分析:(1)关键是理解G时刻的定义,根据定义即可写出的所有元素;(2)要证,即证中含有一元素即可;(3)当时,结论成立.只要证明当时仍然成立即可.试题解析:(1)的元素为和.(2)因为存在使得,所以.记,则,且对任意正整数.因此,从而.(3)当时,结论成立.以下设.由()知.设,记.则.对,记.如果,取,则对任何.从而且.又因为是中的最大元素,所以.从而对任意,特别地,.对.因此.所以.考点:数列、对新定义的理解.【名师点睛】数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型,数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,或)等.21. 【2014年.浙江卷.理19】(本题满分14分)已知数列和满足.若为等比数列,且(1) 求与;(2) 设。记数列的前项和为.(i)求;(ii)求正整数,使得对任意,均有【答案】(),;()(i);(ii)【解析】试题分析:()求与得通项公式,由已知得,再由已知得,又因为数列为等比数列,即可写出数列的通项公式为,由数列的通项公式及,可得数列的通项公式为,;()(i)求数列的前项和,首先求数列的通项公式,由,将,代入整理得,利用等比数列求和公式,即可得数列的前项和;(ii)求正整数,使得对任意,均有,即求数列的最大项,即求数列得正数项,由数列的通项公式,可判断出,当时,从而可得对任意恒有,即试题点评:本题主要考查等差数列与等比的列得概念,通项公式,求和公式,不等式性质等基础知识,同时考查运算求解能力【名师点睛】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力本题属于难题解决等差数列与等比数列的综合问题,关键是理清两个数列的关系如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了22. 【2015高考浙江,理20】已知数列满足=且=-()(1)证明:1();(2)设数列的前项和为,证明().【答案】(1)详见解析;(2)详见解析.试题分析:(1)首先根据递推公式可得,再由递推公式变形可知,从而得证;(2)由和得,从而可得,即可得证.试题解析:(1)由题意得,即,由得,由得,即;(2)由题意得,由和得,因此,由得.【考点定位】数列与不等式结合综合题.【名师点睛】本题主要考查了数列的递推公式,不等式的证明等知识点,属于较难题,第一小问易证,利用条件中的递推公式作等价变形,即可得到,再结合已知条件即可得证,第二小问具有较强的技巧性,首先根据递推公式将转化为只与有关的表达式,再结合已知条件得到的取值范围即可得证,此次数列自2008年之后作为解答题压轴题重出江湖,算是一个不大不小的冷门(之前浙江各地的模考解答题压轴题基本都是以二次函数为背景的函数综合题),由于数列综合题常与不等式,函数的最值,归纳猜想,分类讨论等数学思想相结合,技巧性比较强,需要平时一定量的训练与积累,在后续复习时应予以关注.23. 【2014高考重庆理第22题】(本小题满分12分,()小问4分,()小问8分)设()若,求及数列的通项公式;()若,问:是否存在实数使得对所有成立?证明你的结论.【答案】();()存在,【解析】试题解析:解: ()解法一:再由题设条件知从而是首项为0公差为1的等差数列,故=,即解法二:可写为.因此猜想.下用数学归纳法证明上式:当时结论显然成立.假设时结论成立,即.则这就是说,当时结论成立.所以()解法一:设,则.令,即,解得.下用数学归纳法证明加强命:当时,所以,结论成立.假设时结论成立,即易知在上为减函数,从而即再由在上为减函数得.故,因此,这就是说,当时结论成立.综上,符合条件的存在,其中一个值为.解法二:设,则先证:当时,结论明显成立.假设时结论成立,即易知在上为减函数,从而即这就是说,当时结论成立,故成立.再证:当时,有,即当时结论成立假设时,结论成立,即由及在上为减函数,得这就是说,当时成立,所以对一切成立.由得即因此又由、及在上为减函数得即所以解得.综上,由知存在使对一切成立.考点:1、数列通项公式的求法;2、等差数列;3、函数思想在解决数列问题中的应用.4、数学归纳法.【名师点睛】本题考查了数列通项公式的求法,等差数列,函数思想在解决数列问题中的应用,数学归纳法,属于难题,解题时要认真审题及等价转化的应用,需要学生具有较强的分析解决问题的能力24. 【2015高考重庆,理22】在数列中,(1)若求数列的通项公式;(2)若证明:【答案】(1);(2)证明见解析.【解析】试题分析:(1)由于,因此把已知等式具体化得,显然由于,则(否则会得出),从而,所以是等比数列,由其通项公式可得结论;(2)本小题是数列与不等式的综合性问题,数列的递推关系是可变形为,由于,因此,于是可得,即有,又,于是有 ,这里应用了累加求和的思想方法,由这个结论可知,因此,这样结论得证,本题不等式的证明应用了放缩法.(1)由,有若存在某个,使得,则由上述递推公式易得,重复上述过程可得,此与矛盾,所以对任意,.从而,即是一个公比的等比数列.故.(2)由,数列的递推关系式变为变形为.由上式及,归纳可得因为,所以对求和得另一方面,由上已证的不等式知得综上:【考点定位】等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.,考查探究能力和推理论证能力,考查创新意识【名师点晴】数列是考查考生创新意识与实践精神的最好素材从近些年的高考试题来看,一些构思精巧、新颖别致、极富思考性和挑战性的数列与方程、函数(包括三角函数)、不等式以及导数等的综合性试题不断涌现,这部分试题往往以压轴题的形式出现,考查综合运用知识的能力,突出知识的融会贯通数列的问题难度大,往往表现在与递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力本题第(1)小题通过递推式证明数列是等比数列,从而应用等比数列的通项公式求得通项,第(2)小题把数列与不等式结合起来,利用数列的递推式证明数列是单调数列,利用放缩法证明不等式,难度很大25. 【2015高考安徽,理18】设,是曲线在点处的切线与x轴交点的横坐标.()求数列的通项公式;()记,证明.【答案】();().【解析】试题解析:()解:,曲线在点处的切线斜率为.从而切线方程为.令,解得切线与轴交点的横坐标.()证:由题设和()中的计算结果知.当时,.当时,因为,所以.综上可得对任意的,均有.【考点定位】1.曲线的切线方程;2.数列的通项公式;3.放缩法证明不等式.【名师点睛】数列是特殊的函数,不等式是深刻认识函数与数列的重要工具,三者的综合是近几年高考命题的新热点,且数列的重心已经偏移到不等式的证明与求解中,而不再是以前的递推求通项,此类问题在2010年、2012年、2013年安徽高考解答题中都曾考过.对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩.在后一种类型中,一定要注意放缩的尺度,二是要注意从哪一项开始放缩.26. 【2014,安徽理21】(本小题满分13分)设实数,整数,(I)证明:当且时,;(II)数列满足,证明:【答案】(I)证明:当且时,;(II)【解析】试题分析:(I)证明原不等式成立,可以用数学归纳法,当时,当,由成立得出当时,综合以上当且时,对一切整数,不等式均成立(II)可以有两种方法证明:第一种方法,先用数学归纳法证明其中要利用到当时,当得由(I)中的结论得因此,即所以时,不等式也成立综合可得,对一切正整数,不等式均成立再证由可得,即第二种方法,构造函数设,则,并且由此可得,在上单调递增,因而,当时,再利用数学归纳法证明试题解析:(I)证明:用数学归纳法证明当时,原不等式成立假设时,不等式成立当时,所以时,原不等式也成立综合可得,当且时,对一切整数,不等式均成立(2) 证法1:先用数学归纳法证明当时,由题设知成立假设时,不等式成立由易知当时,当得由(I)中的结论得因此,即所以时,不等式也成立综合可得,对一切正整数,不等式均成立再由可得,即综上所述,证法2:设,则,并且由此可得,在上单调递增,因而,当时,当时,由,即可知,并且,从而故当时,不等式成立假设时,不等式成立,则当时,即有所以当时,原不等式也成立综合可得,对一切正整数,不等式均成立考点:1数学归纳法证明不等式;2构造函数法证明不等式【名师点睛】本题第(1)题是课本上关于贝努利不等式的
展开阅读全文