(新课标)天津市2022年高考数学二轮复习 题型练7 大题专项(五)解析几何综合问题 理

上传人:xt****7 文档编号:107011547 上传时间:2022-06-14 格式:DOC 页数:11 大小:1.09MB
返回 下载 相关 举报
(新课标)天津市2022年高考数学二轮复习 题型练7 大题专项(五)解析几何综合问题 理_第1页
第1页 / 共11页
(新课标)天津市2022年高考数学二轮复习 题型练7 大题专项(五)解析几何综合问题 理_第2页
第2页 / 共11页
(新课标)天津市2022年高考数学二轮复习 题型练7 大题专项(五)解析几何综合问题 理_第3页
第3页 / 共11页
点击查看更多>>
资源描述
(新课标)天津市2022年高考数学二轮复习 题型练7 大题专项(五)解析几何综合问题 理1.(2018天津,理19)设椭圆=1(ab0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|AB|=6.(1)求椭圆的方程;(2)设直线l:y=kx(k0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若sinAOQ(O为原点),求k的值.2.已知椭圆C:=1(ab0)经过点,离心率为.(1)求椭圆C的方程;(2)不垂直于坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P,求直线l的方程.3.设椭圆=1(a)的右焦点为F,右顶点为A.已知,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOAMAO,求直线l的斜率的取值范围.4.(2018北京,理19)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于点M,直线PB交y轴于点N.(1)求直线l的斜率的取值范围;(2)设O为原点,=,求证:为定值.5.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明ARFQ;(2)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程.6.如图,在平面直角坐标系xOy中,椭圆E:=1(ab0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.题型练7大题专项(五)解析几何综合问题1.解 (1)设椭圆的焦距为2c,由已知有,又由a2=b2+c2,可得2a=3b.由已知可得,|FB|=a,|AB|=b.由|FB|AB|=6,可得ab=6,从而a=3,b=2.所以,椭圆的方程为=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1y20,故|PQ|sinAOQ=y1-y2.又因为|AQ|=,而OAB=,故|AQ|=y2.由sinAOQ,可得5y1=9y2.由方程组消去x,可得y1=易知直线AB的方程为x+y-2=0,由方程组消去x,可得y2=由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2-50k+11=0,解得k=,或k=所以,k的值为2.解 (1)由题意得解得a=2,b=1.故椭圆C的方程是+y2=1.(2)设直线l的方程为y=kx+t,设A(x1,y1),B(x2,y2),联立消去y,得(1+4k2)x2+8ktx+4t2-4=0,则有x1+x2=,x1x2=04k2+1t2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2=k2+kt+t2=因为以AB为直径的圆过坐标原点,所以OAOB,x1x2+y1y2=0.因为x1x2+y1y2=0,所以5t2=4+4k2.因为0,所以4k2+1t2,解得t又设A,B的中点为D(m,n),则m=,n=因为直线PD与直线l垂直,所以kPD=-,得由解得当t=-时,0不成立.当t=1时,k=,所以直线l的方程为y=x+1或y=-x+1.3.解 (1)设F(c,0),由,即,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得xB=,从而yB=由(1)知,F(1,0),设H(0,yH),有=(-1,yH),由BFHF,得=0,所以=0,解得yH=因此直线MH的方程为y=-x+设M(xM,yM),由方程组消去y,解得xM=在MAO中,MOAMAO|MA|MO|,即(xM-2)2+,化简得xM1,即1,解得k-,或k所以,直线l的斜率的取值范围为4.(1)解 因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k0).由得k2x2+(2k-4)x+1=0.依题意,=(2k-4)2-4k210,解得k0或0k0,y00.当x0=1时,l2与l1相交于F1,与题设不符.当x01时,直线PF1的斜率为,直线PF2的斜率为因为l1PF1,l2PF2,所以直线l1的斜率为-,直线l2的斜率为-,从而直线l1的方程:y=-(x+1),直线l2的方程:y=-(x-1).由,解得x=-x0,y=,所以Q因为点Q在椭圆上,由对称性,得=y0,即=1或=1.又P在椭圆E上,故=1.由解得x0=,y0=无解.因此点P的坐标为
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!