2022年高考总复习文数(北师大版)讲义:第8章 第04节 空间中的垂直关系 Word版含答案

上传人:xt****7 文档编号:106905237 上传时间:2022-06-14 格式:DOC 页数:8 大小:303KB
返回 下载 相关 举报
2022年高考总复习文数(北师大版)讲义:第8章 第04节 空间中的垂直关系 Word版含答案_第1页
第1页 / 共8页
2022年高考总复习文数(北师大版)讲义:第8章 第04节 空间中的垂直关系 Word版含答案_第2页
第2页 / 共8页
2022年高考总复习文数(北师大版)讲义:第8章 第04节 空间中的垂直关系 Word版含答案_第3页
第3页 / 共8页
点击查看更多>>
资源描述
2022年高考总复习文数(北师大版)讲义:第8章 第04节 空间中的垂直关系 Word版含答案考点高考试题考查内容核心素养直线、平面垂直的判定与性质xx全国卷T105分线面垂直的判定直观想象逻辑推理xx全国卷T1812分线面垂直的证明与体积的计算xx全国卷T1812分面面垂直的证明与侧面积的计算命题分析从近几年高考来看,线面垂直是必考点,常与体积、距离、侧面积等综合考查,考查逻辑推理和转化的思想方法,难度适中.文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直 l性质定理如果两条直线同垂直于一个平面那么这两条直线平行ab文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面AB二面角的定义从一条直线出发的两个半平面所组成的图形叫作二面角这条直线叫作二面角的棱,这两个半平面叫作二面角的面二面角的度量二面角的平面角以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角平面角是直角的二面角叫作直二面角 A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析:选B根据直线与平面垂直的定义知“直线a与平面M的无数条直线都垂直”不能推出“直线a与平面M垂直”,反之可以,所以是必要不充分条件4如图,BAC90,PC平面ABC,则在ABC和PAC的边所在的直线中,与PC垂直的直线有_;与AP垂直的直线有_解析:PC平面ABC,PC垂直于直线AB,BC,AC;ABAC,ABPC,ACPCC,AB平面PAC,与AP垂直的直线是AB.答案:AB,BC,ACAB5PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有_对解析:由于PD平面ABCD,故平面PAD平面ABCD,平面PDB平面ABCD,平面PDC平面ABCD,平面PDA平面PDC,平面PAC平面PDB,平面PAB平面PAD, 平面PBC平面PDC,共7对答案:7直线与平面垂直的判定与性质明技法判定线面垂直的四种方法提能力【典例】 (xx全国卷改编)如图,菱形ABCD的对角线AC与BD交于点O,AB5,AC6,点E,F分别在AD,CD上,AECF,EF交BD于点H.将DEF沿EF折到DEF的位置OD.求证:DH平面ABCD.证明:由已知得ACBD,ADCD.又由AECF得,故ACEF.因此EFHD,从而EFDH.由AB5,AC6得DOBO4.由EFAC得.所以OH1,DHDH3.于是DH2OH2321210DO2,故DHOH.又DHEF,而OHEFH,且OH,EF平面ABCD,所以DH平面ABCD.刷好题如图,在三棱锥PABC中,已知平面PBC平面ABC.(1)若ABBC,且CPPB,求证:CPPA;(2)若过点A作直线l平面ABC,求证:l平面PBC.证明:(1)因为平面PBC平面ABC,平面PBC平面ABCBC,AB平面ABC,ABBC,所以AB平面PBC.因为CP平面PBC,所以CPAB.又CPPB,且PBABB,AB平面PAB,PB平面PAB,所以CP平面PAB.又PA平面PAB,所以CPPA.(2)在平面PBC内过点P作PDBC,垂足为D.因为平面PBC平面ABC,又平面PBC平面ABCBC,PD平面PBC,所以PD平面ABC.又l平面ABC,所以lPD.因为l平面PBC,PD平面PBC,所以l平面PBC.平面与平面垂直的判定与性质明技法1判定面面垂直的方法(1)面面垂直的定义;(2)面面垂直的判定定理(a,a)2在已知平面垂直时,一般要用性质定理进行转化在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直提能力【典例】 菱形ABCD与正三角形BCE的边长均为2,且平面ABCD平面BCE,FD平面ABCD,FD.(1)求证:EF平面ABCD;(2)求证:平面ACF平面BDF.证明:(1)如图,过点E作EHBC于H,连接HD,EH.平面ABCD平面BCE,EH平面BCE,平面ABCD平面BCEBC,EH平面ABCD,又FD平面ABCD,FD,FDEH,FDEH.四边形EHDF为平行四边形EFHD.EF平面ABCD,HD平面ABCD,EF平面ABCD. (2)FD平面ABCD,AC平面ABCD,FDAC,又四边形ABCD是菱形,ACBD,又FDBDD,AC平面FBD,又AC平面ACF,从而平面ACF平面BDF.刷好题(xx济宁月考)如图,四棱锥PABCD中,底面ABCD是平行四边形,且平面PAC平面ABCD,E为PD的中点,PAPC,AB2BC2,ABC60.(1)求证:PB平面ACE;(2)求证:平面PBC平面PAC.证明:(1)连接BD,交AC于点O,连接OE,底面ABCD是平行四边形,O为BD中点,又E为PD中点,OEPB,又OE平面ACE,PB平面ACE,PB平面ACE.(2)PAPC,O为AC中点,POAC,又平面PAC平面ABCD,平面PAC平面ABCDAC,PO平面PAC,PO平面ABCD,又BC平面ABCD,POBC.在ABC中,AB2BC2,ABC60,AC,AC2AB2BC2,BCAC.又PO平面PAC,AC平面PAC,POACO,BC平面PAC,又BC平面PBC,平面PBC平面PAC.空间位置关系的综合问题明技法空间位置关系的转化路线图线线平行(垂直)、线面平行(垂直)和面面平行(垂直)是空间中三种基本平行(垂直)关系,它们之间可以相互转化,其转化关系如下:提能力【典例】 如图,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点在棱PB上是否存在点F,使得PA平面CEF?说明理由(1)证明:因为PC平面ABCD,DC平面ABCD.所以PCDC.又因为DCAC,且PCACC,所以DC平面PAC.(2)证明:因为ABDC,DCAC,所以ABAC.因为PC平面ABCD,所以PCAB.又因为PCACC,所以AB平面PAC.又AB平面PAB,所以平面PAB平面PAC.(3)解:棱PB上存在点F,使得PA平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EFPA.又因为PA平面CEF,且EF平面CEF,所以PA平面CEF.刷好题(xx潍坊模拟)如图(1),在直角梯形ABCD中,ADBC,BAD,ABBCADa,E是AD的中点,O是AC与BE的交点将ABE沿BE折起到图(2)中A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD平面A1OC;(2)当平面A1BE平面BCDE时,四棱锥A1BCDE的体积为36,求a的值(1)证明:在题图(1)中,因为ABBCADa,E是AD的中点,BAD,所以BEAC.即在题图(2)中,BEA1O,BEOC,从而BE平面A1OC.又CDBE,所以CD平面A1OC.(2)解:由已知,平面A1BE平面BCDE,且平面A1BE平面BCDEBE,又由(1)可得A1OBE,所以A1O平面BCDE.即A1O是四棱锥A1BCDE的高由题图(1)知,A1OAOABa,平行四边形BCDE的面积SBCABa2,从而四棱锥A1BCDE的体积为VSA1Oa2aa3.由a336,得a6.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!