2022年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题

上传人:xt****7 文档编号:106629673 上传时间:2022-06-13 格式:DOC 页数:10 大小:187.50KB
返回 下载 相关 举报
2022年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题_第1页
第1页 / 共10页
2022年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题_第2页
第2页 / 共10页
2022年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题_第3页
第3页 / 共10页
点击查看更多>>
资源描述
2022年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题纵观近几年的高考试题,排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力除了以选择、填空的形式考查,也往往在解答题中与古典概型概率计算相结合进行考查有一些问题如果直接从题目入手,处理起来比较繁琐.但若找到解决问题的合适模型,或将问题进行等价的转化.便可巧妙的解决问题.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素.例如:用组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列.(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序3、错位排列:排列好的个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这个元素的一个错位排列.例如对于,则是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在个元素的排列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)5、不同元素分组:将个不同元素放入个不同的盒中6、相同元素分组:将个相同元素放入个不同的盒内,且每盒不空,则不同的方法共有种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这个元素排成一列,共有个空,使用个“挡板”进入空档处,则可将这个元素划分为个区域,刚好对应那个盒子. 7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可.【经典例题】例1.【2018届湖北省黄冈中学5月三模】对33000分解质因数得,则的正偶数因数的个数是( )A. 48 B. 72 C. 64 D. 96【答案】A由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个,即的正偶数因数的个数是,故选A.例2.【2018届贵州省凯里市第一中学四模】集合,从集合中各取一个数,能组成( )个没有重复数字的两位数?A. 52 B. 58 C. 64 D. 70【答案】B【解析】分析:分别从集合A,B取一个数字,再全排列,根据分步计数原理即可得到答案详解:故选:B例3.【2018届四川省 “联测促改”】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数19的方法的一种.例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为( )A. 48 B. 60 C. 96 D. 120【答案】C对于,组合出的可能的算筹为:共6种,可以组成的三位数的个数为: 种,同理可以组成的三位数的个数为: 种,利用加法原理可得:8根算筹可以表示三位数的个数(算筹不能剩余)为.本题选择C选项.例4.已知集合, ,定义集合,则中元素个数为( )A. B. C. D. 【答案】C例5.如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有()A. 192种 B. 128种 C. 96种 D. 12种【答案】C【解析】试题分析:根据题意,先分析A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,由组合数公式计算可得其填法数目,对于C、D两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得答案根据题意,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有种情况,对于C、D两个方格,每个方格有4种情况,则共有44=16种情况,则不同的填法共有166=96种,故选C例6.【2018届黑龙江省牡丹江市第一高级中学高三上期末】将数字1,2,3,4,填入右侧的表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有( )种A. 432 B. 576 C. 720 D. 864【答案】B【解析】对符合题意的一种填法如图,行交换共有种,列交换共有种,所以根据分步计数原理得到不同的填表方式共有种,故选B. 例7. 设集合,那么集合中满足条件“”的元素个数为( )A. B. C. D. 【答案】D例8.已知,且中有三个元素,若中的元素可构成等差数列,则这样的集合共有( )个A. B. C. D. 【答案】C【解析】思路:设中构成等差数列的元素为,则有,由此可得应该同奇同偶,而当同奇同偶时,则必存在中间项,所以问题转变为只需在中寻找同奇同偶数的情况.同为奇数的可能的情况为,同为偶数的可能的情况为,所以一共有种.例9.【2018届云南省昆明市第二次统考】定义“有增有减”数列如下: ,满足,且,满足.已知“有增有减”数列共4项,若,且,则数列共有( )A. 64个 B. 57个 C. 56个 D. 54个【答案】D例10:方程的正整数解有多少组?非负整数解有多少组?【答案】正整数解有84种,非负整数解有286种 【解析】思路:本题可将10理解为10个1相加,而相当于四个盒子,每个盒子里装入了多少个1,则这个变量的值就为多少.从而将问题转化为相同元素分组的模型,可以使用挡板法得:种;非负整数解相当于允许盒子里为空,而挡板法适用于盒子非空的情况,所以考虑进行化归:,则这四个盒子非空即可.所以使用挡板法得:种【精选精练】1.【2018届山东省潍坊市二模】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( )A. 种 B. 种 C. 种 D. 种【答案】A【解析】分析:该题属于有限制条件的排列问题,在解题的过程中,需要分情况讨论,因为“数”必须排在前三节,这个就是不动的,就剩下了五个不同的元素,所以需要对“数”的位置分三种情况,对于相邻元素应用捆绑法来解决即可.详解:当“数”排在第一节时有排法,当“数”排在第二节时有种排法,当“数”排在第三节时,当“射”和“御”两门课程排在第一、二节时有种排法,当“射”和“御”两门课程排在后三节的时候有种排法,所以满足条件的共有种排法,故选A.点睛:在解决问题时一是注意对“数”的位置分三种情况,二是在“数”排在第三节时,要对两个相邻元素的位置分类讨论,再者还要注意“数”排在第二节时,两个相邻元只能排在后四节.2.【2018届北京师范大学附中二模】若自然数使得作竖式加法均不产生进位现象,则称为“开心数”例如:32是“开心数”因不产生进位现象;23不是“开心数”,因产生进位现象,那么,小于100的“开心数”的个数为( )A. 9 B. 10 C. 11 D. 12【答案】D3.【2018届广东省广州市第一次调研】某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种 B. 24种 C. 22种 D. 20种【答案】B【解析】第一类:男生分为,女生全排,男生全排得,第二类:男生分为,所以男生两堆全排后女生全排,不同的推荐方法共有 ,故选B.4. 设是整数集的一个非空子集,对于,如果且,那么称是集合的一个“孤立元”,给定,则的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( )A. B. C. D. 【答案】C【解析】思路:首先要理解“,则且”,意味着“独立元”不含相邻的数,元素均为独立元,则说明3个元素彼此不相邻,从而将问题转化为不相邻取元素问题,利用插空法可得:种 5.一个含有10项的数列满足:,则符合这样条件的数列有( )个A. 30 B. 35 C. 36 D. 40【答案】36种6.【2018届浙江省金丽衢十二校第二次联考】用0,1,2,3,4可以组成的无重复数字的能被3整除的三位数的个数是()A. 20 B. 24 C. 36 D. 48【答案】A【解析】分析:先根据能被3整除的三位数字组成为012,024,123,234四种情况,再分类讨论排列数,最后相加得结果.详解:因为能被3整除的三位数字组成为012,024,123,234四种情况,所以对应排列数分别为因此一共有,选A.7【2018届上海市松江、闵行区二模】13设,那么满足的所有有序数组的组数为_.【答案】【解析】分类讨论: ,则这四个数为或,有组; ,则这四个数为或,有组; ,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法8【2018届天津市十二重点中学联考(一)】用0,1,2,3,4组成没有重复数字的五位偶数,要求奇数不相邻,且0不与另外两个偶数相邻,这样的五位数一共有_个.(用数字作答)【答案】9对于各数互不相等的整数数组(是不小于的正整数),对于任意的,当时有,则称是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组中的逆序数为_;若数组中的逆序数为,则数组中的逆序数为_.【答案】 3 10已知集合,集合的所有非空子集依次记为:,设分别是上述每一个子集内元素的乘积.(如果的子集中只有一个元素,规定其积等于该元素本身),那么_【答案】5【解析】 所有子集的“乘积”之和即 展开式中所有项的系数之和T-1,令 ,则 故答案为511【2018届浙江省嵊州市高三上期末】9某学校要安排位数学老师、位英语老师和位化学老师分别担任高三年级中个不同班级的班主任,每个班级安排个班主任由于某种原因,数学老师不担任班的班主任,英语老师不担任班的班主任,化学老师不担班和班的班主任, 则共有_种不同的安排方法(用数字作答)【答案】32【解析】若数学老师分到两班,共有种分法,若数学老师分到两班,共有种分法,若数学老师分到两班,共有种分法,若数学老师分到两班,共有种分法,若数学老师分到两班,共有种分法,若数学老师分到两班,共有种分法,共有种安排方法,故答案为 .12.圆周上有20个点,过任意两点连接一条弦,这些弦在圆内的交点最多有多少个【答案】个
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!