资源描述
2022届高考数学二轮复习 第一篇 专题六 解析几何 第3讲 圆锥曲线的综合问题教案 理1.(2018全国卷,理19)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.(1)证明:由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且CD为直径,所以DMCM.又BCCM=C,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)解:以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.当三棱锥MABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0),设n=(x,y,z)是平面MAB的法向量,则即可取n=(1,0,2),是平面MCD的法向量,因此cos=,sin=.所以平面MAB与平面MCD所成二面角的正弦值是.2.(2017全国卷,理20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=.故x1x2=4.因此OA的斜率与OB的斜率之积为=-1,所以OAOB.故坐标原点O在圆M上.(2)解:由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,-,圆M的半径为,圆M的方程为x-2+y+2=.3.(2017全国卷,理20)已知椭圆C:+=1(ab0),四点P1(1,1),P2(0,1),P3-1,P41,中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.(1)解:由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点,又由+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=.由题设知k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)+(m-1)=0.解得k=-.当且仅当m-1时,0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).4.(2017全国卷,理20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解:设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0),由=得x0=x,y0=y.因为M(x0,y0)在C上,所以+=1,因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.1.考查角度以直线与圆锥曲线、圆与圆锥曲线为载体,考查圆锥曲线中的判断与证明、最值与范围、定点与定值、存在性等问题.2.题型及难易度解答题,难度中高档.(对应学生用书第4851页) 直线与圆锥曲线、圆与圆锥曲线的综合问题【例1】 (2018南昌市摸底调研)已知椭圆C:+=1(ab0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:y=kx+m与椭圆C交于M,N两点,O为坐标原点,若kOMkON=,求证:点(m,k)在定圆上.(1)解:由已知得e=,2b=2,又a2-b2=c2,所以b=1,a=2,所以椭圆C的标准方程为+y2=1.(2)证明:设M(x1,y1),N(x2,y2),联立直线与椭圆方程,得消去y,得(4k2+1)x2+8kmx+4m2-4=0,依题意,=(8km)2-4(4k2+1)(4m2-4)0,化简得m24k2+1,由根与系数的关系知x1+x2=-,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,若kOMkON=,则=,即4y1y2=5x1x2,所以4k2x1x2+4km(x1+x2)+4m2=5x1x2,所以(4k2-5)+4km-+4m2=0,即(4k2-5)(m2-1)-8k2m2+m2(4k2+1)=0,化简得m2+k2=,由得0m2,0)与圆O:x2+y2=5相交于A,B两点,且|AB|=4,过劣弧AB上的动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,相交于点M.(1)求抛物线E的方程;(2)求点M到直线CD距离的最大值.解:(1)由|AB|=4,且B在圆上,由抛物线和圆的对称性可得B(2,1),代入抛物线可得4=2p,解得p=2,所以抛物线E的方程为x2=4y.(2)设Cx1,Dx2,由x2=4y,可得y=x2,所以y=x,则l1的方程为y-=x1(x-x1),即y=x1x-,同理l2的方程为y=x2x-,联立解得x=(x1+x2),y=x1x2,又CD与圆x2+y2=5切于点P(x0,y0),易得CD方程为x0x+y0y=5,其中x0,y0满足+=5,y01,联立化简得y0x2+4x0x-20=0,所以x1+x2=-,x1x2=-,设M(x,y),则x=(x1+x2)=-,y=x1x2=-,所以M-,-,所以点M到直线CD:x0x+y0y=5距离为d=,易知d关于y0单调递减,dmax=,即点M到直线CD距离的最大值为.定点与定值问题考向1定点问题【例2】 (2018南充模拟)已知椭圆+=1的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AHMN,垂足为H且=,求证:直线l恒过定点.(1)解:设P(x0,y0),又A(-2,0),F(-1,0),所以=(-1-x0)(-2-x0)+,因为P点在椭圆+=1上,所以+=1,即=3-,且-2x02,所以=+3x0+5,函数f(x0)=+3x0+5在-2,2上单调递增,当x0=-2时,f(x0)取最小值为0;当x0=2时,f(x0)取最大值为12.所以的取值范围是0,12.(2)证明:由题意,联立得(3+4k2)x2+8kmx+4m2-12=0,由=(8km)2-4(3+4k2)(4m2-12)0得4k2+3m2,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,=(+)(+)=+=0,所以(x1+2)(x2+2)+y1y2=0,即(1+k2)x1x2+(2+km)(x1+x2)+4+m2=0,4k2-16km+7m2=0,所以k=m或k=m均适合,当k=m时,直线l过点A,舍去,当k=m时,直线l:y=kx+k过定点-,0.考向2定值问题【例3】 (2018江西省红色七校联考)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.(1)求椭圆C的标准方程;(2)已知点P(2,t),Q(2,-t)(t0)在椭圆C上,点A,B是椭圆C上不同于P,Q的两个动点,且满足APQ=BPQ.试问:直线AB的斜率是否为定值?请说明理由.解:(1)因为椭圆C的中心在原点,焦点在x轴上,所以设椭圆标准方程为+=1(ab0).因为椭圆离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.x2=8y的焦点为(0,2),所以b=2,e=,因为a2-b2=c2,所以a2=16,b2=12.所以椭圆C的标准方程为+=1.(2)直线x=2与椭圆+=1交点P(2,3),Q(2,-3),所以|PQ|=6,设A(x1,y1),B(x2,y2),当APQ=BPQ时,直线PA,PB斜率之和为0.设PA斜率为k,则PB斜率为-k.直线PA的方程为y-3=k(x-2),与椭圆方程联立得(3+4k2)x2+8k(-2k+3)x+4(2k-3)2-48=0,所以x1+2=;同理x2+2=所以x1+x2=,x1-x2=,y1-y2=k(x1-2)+3-k(x2-2)+3=,直线AB斜率为=.(1)定点问题的常见解法:根据题意选择参数,建立一个直线系或曲线系方程,而该定点与参数无关,故得到一个关于定点坐标的方程组.以这个方程组的解为坐标的点即为所求定点;从特殊位置入手,找出定点,再证明该点的坐标满足题意(与参数无关),这种方法叫“特殊值探路法”.(2)关于直线系l:y=kx+m过定点问题有以下重要结论:若m为常数b,则直线l必过定点(0,b);若m=nk(n为常数),则直线l必过定点(-n,0);若m=nk+b(n,b为常数),则直线必过定点(-n,b).(3)一般曲线过定点,把曲线方程化为f1(x,y)+f2(x,y)=0(为参数)的形式,解方程组即得定点坐标.(4)定值问题就是证明一个量与其他变化因素无关.解决这类问题以坐标运算为主,需建立相应的目标函数(用变化的量表示),通过运算求证目标的取值与变化的量无关.热点训练2:(2018太原市二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.(1)解:设B(x,y),y0,则AB的中点D,0,因为C(0,1),连接DC,所以=-,1,=,y.在C中,DCDB,所以=0,所以-+y=0,即x2=4y(y0),所以点B的轨迹E的方程为x2=4y(y0).(2)证明:由(1)可得曲线E的方程为x2=4y(y0).设P(t,-1),M(x1,y1),N(x2,y2),因为y=,所以y=,所以过点M,N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2),由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.因为点P在这两条切线上,所以2(y1-1)=tx1,2(y2-1)=tx2,即直线MN的方程为2(y-1)=tx,故直线MN过定点C(0,1).热点训练3:(2018长沙市名校实验班二次阶段性测试)椭圆E:+=1(ab0)的右焦点为F2(2,0),圆x2+y-2=与椭圆E的一个交点在x轴上的射影恰好为点F2.(1)求椭圆E的标准方程;(2)设直线l:y=x+m与椭圆E交于A,B两点,以AB为斜边作等腰直角三角形ABC,记直线l与x轴的交点为D,试问|CD|是否为定值?若是,求出定值;若不是,请说明理由.解:(1)在x2+y-2=中,令x=2,得y=1或y=0(舍去),由题意可得解得a2=16,b2=4,所以椭圆E的标准方程为+=1.(2)由可得x2+2mx+2m2-8=0,则=(2m)2-4(2m2-8)=32-4m20,设A(x1,y1),B(x2,y2),则有x1+x2=-2m,x1x2=2m2-8,y1+y2=(x1+x2)+2m=m,所以|AB|=,设AB的中点为G,则G-m,.又直线l与x轴的交点为D(-2m,0),所以|DG|=,所以|CD|2=|CG|2+|DG|2=|AB|2+|DG|2=(32-4m2)+=10,得|CD|=,所以|CD|为定值,定值是.探索性问题考向1位置的探索【例4】 (2018广西三校九月联考)已知椭圆方程C:+=1(ab0),椭圆的右焦点为(1,0),离心率为e=,直线l:y=kx+m与椭圆C相交于A,B两点,且kOAkOB=-.(1)求椭圆的方程及AOB的面积;(2)在椭圆上是否存在一点P,使四边形OAPB为平行四边形,若存在,求出|OP|的取值范围,若不存在,说明理由.解:(1)由已知c=1,=,所以a=2,所以b2=a2-c2=3.所以椭圆方程为+=1.设A(x1,y1),B(x2,y2),则A,B的坐标满足消去y化简得,(3+4k2)x2+8kmx+4m2-12=0,x1+x2=-,x1x2=,(8km)2-4(3+4k2)(4m2-12)0得4k2-m2+30,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2+km-+m2=.因为kOAkOB=-,所以=-,即y1y2=-x1x2,所以=-即2m2-4k2=3,因为|AB|=.O到直线y=kx+m的距离d=,所以SAOB=d|AB|=.(2)若椭圆上存在P使四边形OAPB为平行四边形,则=+,设P(x0,y0),则x0=x1+x2=-,y0=y1+y2=,由于P在椭圆上,所以+=1,从而化简得+=1,化简得4m2=3+4k2.由kOAkOB=-,知2m2-4k2=3,联立方程知3+4k2=0,无解,故不存在P使四边形OAPB为平行四边形.考向2参数值的探索【例5】 (2018辽宁省辽南协作校一模)已知抛物线C:y=2x2,直线l:y=kx+2交C于A,B两点,M是AB的中点,过M作x轴的垂线交C于N点.(1)证明:抛物线C在N点处的切线与AB平行;(2)是否存在实数k,使以AB为直径的圆M经过N点?若存在,求出k的值;若不存在,请说明理由.(1)证明:设A(x1,y1),B(x2,y2),把y=kx+2代入y=2x2得2x2-kx-2=0.所以x1+x2=,xN=xM=,所以N,.因为(2x2)=4x,所以抛物线在N点处的切线斜率为k,故该切线与AB平行.(2)解:假设存在实数k,使以AB为直径的圆M经过N点,则|MN|=|AB|.由(1)知yM=(y1+y2)=(kx1+kx2+4)=+2,又因为MN垂直于x轴,所以|MN|=yM-yN=,而|AB|=|x1-x2|=.所以=,解得k=2.所以,存在实数k=2使以AB为直径的圆M经过N点.解决存在性(探索性)问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程(组),若方程(组)有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.热点训练4:(2018太原市一模)已知椭圆C:+=1(ab0)的左顶点为A,右焦点为F2(2,0),点B(2,-)在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N.在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)依题意,得c=2.因为点B(2,-)在C上,所以+=1.又a2=b2+c2,所以a2=8,b2=4,所以椭圆C的方程为+=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),x10,则F(-x1,-y1),消去y并化简得,(1+2k2)x2-8=0,解得x1=,则y1=,又A(-2,0),所以AE所在直线的方程为y=(x+2),所以M0,同理可得N0,=-x0,=-x0,.若MPN为直角,则=0,所以-4=0,所以x0=2或x0=-2,所以存在点P,使得无论非零实数k怎样变化,总有MPN为直角,此时点P的坐标为(2,0)或(-2,0).热点训练5:已知抛物线E:x2=2py(p0)上一点P的纵坐标为4,且点P到焦点F的距离为5.(1)求抛物线E的方程;(2)如图,设斜率为k的两条平行直线l1,l2分别经过点F和H(0,-1),l1与抛物线E交于A,B两点,l2与抛物线E交于C,D两点.问:是否存在实数k,使得四边形ABDC的面积为4+4?若存在,求出k的值;若不存在,请说明理由.解:(1)由抛物线的定义知,点P到抛物线E的准线的距离为5.因为抛物线E的准线方程为y=-,所以4+=5,解得p=2,所以抛物线E的方程为x2=4y.(2)由已知得,直线l1:y=kx+1.由消去y得x2-4kx-4=0,1=16(k2+1)0恒成立,|AB|=4(k2+1),直线l2:y=kx-1,由消去y得x2-4kx+4=0,由2=16(k2-1)0得k21,|CD|=4,又直线l1,l2间的距离d=,所以四边形ABDC的面积S=d(|AB|+|CD|)=4(+).解方程4(+)=4(+1),得k2=2(满足k21),所以存在满足条件的k,k的值为.最值(范围)问题【例6】 (2016全国卷)已知A是椭圆E:+=1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(1)当|AM|=|AN|时,求AMN的面积;(2)当2|AM|=|AN|时,证明:k0.由已知及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.因此AMN的面积SAMN=2=.(2)证明:设直线AM的方程为y=k(x+2)(k0),代入+=1得(3+4k2)x2+16k2x+16k2-12=0.由x1(-2)=得x1=,故|AM|=|x1+2|=.由题设,设直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|得=,即4k3-6k2+3k-8=0.设f(t)=4t3-6t2+3t-8,则k是f(t)的零点,f(t)=12t2-12t+3=3(2t-1)20,所以f(t)在(0,+)上单调递增.又f()=15-260,因此f(t)在(0,+)内有唯一的零点,且零点k在(,2)内,所以kb0)的离心率为,左、右焦点分别为F1,F2,过F1的直线交椭圆于P,Q两点,以PF1为直径的动圆内切于圆x2+y2=4.(1)求椭圆的方程;(2)延长PO交椭圆于R点,求PQR面积的最大值.解:(1)设|PF1|的中点为M,在三角形PF1F2中,由中位线得|OM|=|PF2|,当两个圆相内切时,两个圆的圆心距等于两个圆的半径之差,即|OM|=2-|PF1|,所以|PF2|=2-|PF1|PF1|+|PF2|=4,即a=2,又e=,所以c=1,b=,所以椭圆方程为+=1.(2)由已知kPQ0可设直线PQ:x=my-1,P(x1,y1),Q(x2,y2),(3m2+4)y2-6my-9=0,SPQR=2SPOQ=|y1-y2|=,令=t1,原式=,当t=1时,3t+min=4.所以(SPQR)max=3. 【例1】 (2018福州市期末)抛物线C:y=2x2-4x+a与两坐标轴有三个交点,其中与y轴的交点为P.(1)若点Q(x,y)(1x4)在C上,求直线PQ斜率的取值范围;(2)证明:经过这三个交点的圆E过定点.(1)解:由题意得P(0,a)(a0),Q(x,2x2-4x+a)(1x4),故kPQ=2x-4.因为1x4,所以-2kPQ0,ab0)的离心率为,左、右焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点.(1)若以AF1为直径的动圆内切于圆x2+y2=9,求椭圆长轴的长;(2)当b=1时,在x轴上是否存在定点T,使得为定值?若存在,求出定值;若不存在,请说明理由.解:(1)设AF1的中点为M,连接AF2,MO,在AF1F2中,由中位线定理得,|OM|=|AF2|=(2a-|AF1|)=a-|AF1|.当两个圆内切时,|OM|=3-|AF1|,所以a=3,故椭圆长轴的长为6.(2)由b=1及离心率为,得c=2,a=3,所以椭圆C的方程为+y2=1.当直线AB的斜率存在时,设直线AB的方程为y=k(x+2).设A(x1,y1),B(x2,y2),联立方程,得消去y并整理得(9k2+1)x2+36k2x+72k2-9=0,=36k2+360,x1+x2=-,x1x2=,y1y2=k2(x1+2)(x2+2)=.假设存在定点T,设T(x0,0),则=x1x2-(x1+x2)x0+y1y2=,当9+36x0+71=9(-9),即x0=-时,为定值,定值为-9=-.当直线AB的斜率不存在时,不妨设A-2,B-2,-,当T-,0时,=,-=-,为定值.综上,在x轴上存在定点T-,0,使得为定值-.【例3】 (2018广州市调研)已知抛物线C:y2=2px(p0)的焦点为F,抛物线C上存在一点E(2,t)到焦点F的距离等于3.(1)求抛物线C的方程;(2)过点K(-1,0)的直线l与抛物线C相交于A,B两点(A,B两点在x轴上方),点A关于x轴的对称点为D,且FAFB,求ABD的外接圆的方程.解:(1)抛物线的准线方程为x=-,由抛物线的定义,可得2+=3,解得p=2.所以抛物线C的方程为y2=4x.(2)法一设直线l的方程为x=my-1(m0).将x=my-1代入y2=4x并整理得y2-4my+4=0,由=(-4m)2-160,并结合m0,解得m1.设A(x1,y1),B(x2,y2),则D(x1,-y1),y1+y2=4m,y1y2=4,所以=(x1-1)(x2-1)+y1y2=(1+m2)y1y2-2m(y1+y2)+4=8-4m2,因为FAFB,所以=0,即8-4m2=0,结合m0,解得m=.所以直线l的方程为x-y+1=0.设AB的中点坐标为(x0,y0),则y0=2m=2,x0=my0-1=3,所以线段AB的垂直平分线方程为y-2=-(x-3).因为线段AD的垂直平分线方程为y=0,所以ABD的外接圆圆心坐标为(5,0).因为圆心(5,0)到直线l的距离d=2,且|AB|=4,所以圆的半径r=2.所以ABD的外接圆的方程为(x-5)2+y2=24.法二依题意可设直线l:y=k(x+1)(k0).将直线l与抛物线C的方程联立并整理得k2x2+(2k2-4)x+k2=0.由=(2k2-4)2-4k40,结合k0,得0k0,解得k=.所以直线l的方程为x-y+1=0.设AB的中点坐标为(x0,y0),则x0=3,y0=(x0+1)=2,所以线段AB的垂直平分线方程为y-2=-(x-3).因为线段AD的垂直平分线方程为y=0.所以ABD的外接圆圆心坐标为(5,0).因为圆心(5,0)到直线l的距离d=2,且|AB|=4,所以圆的半径r=2.所以ABD的外接圆的方程为(x-5)2+y2=24.(对应学生用书第52页) 【典例】 (2018全国卷)(12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为 (2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMA=OMB.(1)解:由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为1,或1,-.又M(2,0),所以AM的方程为y=-x+或y=x-.(2)证明:当l与x轴重合时,OMA=OMB=0.当l与x轴垂直时,OM为AB的垂直平分线,所以OMA=OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k0),A(x1,y1),B(x2,y2),则-x1,-x2,直线MA,MB的斜率之和为kMA+kMB=+.由y1=kx1-k,y2=kx2-k得kMA+kMB=.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0.所以x1+x2=,x1x2=.则2kx1x2-3k(x1+x2)+4k=0.从而kMA+kMB=0,故MA,MB的倾斜角互补,所以OMA=OMB.综上,OMA=OMB.注:第(1)问得分说明:写出l的方程得1分.求出A的坐标得1分.求出AM的方程得2分.第(2)问得分说明:当l与x轴垂直时,证出ABM=ABN,得1分.当l与x轴不垂直时,设出l的方程,得1分.直线l的方程与椭圆方程联立,消元并得出x1+x2,x1x2或y1+y2,y1y2的值(含k)得2分.证出AM,BM的斜率之和为0得2分.证出OMA=OMB得1分.写出结论得1分.【答题启示】 (1)求交点问题常联立方程组求解.(2)求与交点有关的问题常联立方程组,设出交点,消元,根据根与系数的关系求解.(3)设直线方程时,要分斜率存在和不存在两种情况.本题易忽略斜率不存在的情况而失分.(4)求与交点有关的问题时,要对x1与y1,x2与y2相互转化(含斜率k的式子),本题常因不会转化或转化时计算错误而失分.(5)分类讨论问题要先分后总,本题易忽略结论而失1分.
展开阅读全文