资源描述
2022届高考数学二轮复习 第一篇 专题六 解析几何 第2讲 直线与圆锥曲线的位置关系教案 理1.(2018全国卷,理8)设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则等于(D)(A)5(B)6(C)7(D)8解析:由题意知直线MN的方程为y=(x+2),联立直线与抛物线的方程,得解得或不妨设M为(1,2),N为(4,4).又因为抛物线焦点为F(1,0),所以=(0,2),=(3,4).所以=03+24=8.故选D.2.(2018全国卷,理11)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|等于(B)(A)(B)3(C)2(D)4解析:由已知得双曲线的两条渐近线方程为y=x.设两条渐近线夹角为2,则有tan =,所以=30.所以MON=2=60.又OMN为直角三角形,由于双曲线具有对称性,不妨设MNON,如图所示.在RtONF中,|OF|=2,则|ON|=.则在RtOMN中,|MN|=|ON|tan 2=tan 60=3.故选B.3.(2017全国卷,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为(A)(A)16(B)14(C)12(D)10解析:y2=4x的焦点F(1,0),由题意知l1,l2的斜率都存在且不为0,设直线l1方程为y=k(x-1)(k0),则直线l2方程为y=-(x-1).设A(x1,y1),B(x2,y2),D(x3,y3),E(x4,y4).将y=k(x-1)代入y2=4x得k2x2-(2k2+4)x+k2=0.所以x1+x2=2+,同理可得x3+x4=2+4k2,所以|AB|+|DE|=x1+x2+x3+x4+4=4+4+4k28+2=16.(当且仅当k=1时取等号).故选A.4.(2018全国卷,理16)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若AMB=90,则k=.解析:法一设点A(x1,y1),B(x2,y2),则所以-=4(x1-x2),所以k=.设AB的中点M(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A,B,则|MM|=|AB|=(|AF|+|BF|)=(|AA|+|BB|).因为M(x0,y0)为AB中点,所以M为AB的中点,所以MM平行于x轴,所以y1+y2=2,所以k=2.法二由题意知,抛物线的焦点坐标为F(1,0),设直线方程为y=k(x-1),直线方程与y2=4x联立,消去y,得k2x2-(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则x1x2=1,x1+x2=.由M(-1,1),得=(-1-x1,1-y1),=(-1-x2,1-y2).由AMB=90,得=0,所以(x1+1)(x2+1)+(y1-1)(y2-1)=0,所以x1x2+(x1+x2)+1+y1y2-(y1+y2)+1=0.又y1y2=k(x1-1)k(x2-1)=k2x1x2-(x1+x2)+1,y1+y2=k(x1+x2-2),所以1+1+k21-+1-k-2+1=0,整理得-+1=0,解得k=2.经检验k=2是分式方程的根.答案:25.(2017全国卷,理16)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.解析:由y2=8x可得F(2,0),FM的斜率一定存在,设为k,则直线FM的方程为y=k(x-2),令x=0可得N(0,-2k),又M为FN中点,所以M(1,-k),代入y2=8x得k2=8,所以|FN|=6.答案:66.(2018全国卷,理20)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m0).(1)证明:k-;(2)设F为C的右焦点,P为C上一点,且+=0.证明:|,|,|成等差数列,并求该数列的公差.证明:(1)设A(x1,y1),B(x2,y2),则+=1,+=1.两式相减,并由=k得+k=0.由题设知=1,=m,于是k=-.由题设得0m,故k-.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1.y3=-(y1+y2)=-2m0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0.=16k2+160,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去)或k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.判断直线与圆锥曲线的位置关系有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数.热点训练1:(2018淮北一模)已知椭圆C:+=1(ab0),其左右焦点为F1,F2,过F1的直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=.(1)求椭圆C的方程;(2)若椭圆上存在点M,使得2=+,求直线l的方程.解:(1)直线l:x+my+=0过点F1,令y=0,解得x=-,所以c=,因为e=,所以a=2,所以b2=a2-c2=4-3=1,所以椭圆C的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),M(x3,y3),由2=+,得x3=x1+x2,y3=y1+y2代入椭圆方程可得x1+x22+y1+y22-1=0,所以+(x1x2+4y1y2)=1,所以x1x2+4y1y2=0,联立方程消去x可得(m2+4)y2+2my-1=0,所以y1+y2=,y1y2=,所以x1x2+4y1y2=(my1+)(my2+)+4y1y2=(m2+4)y1y2+m(y1+y2)+3=0,即m2=2,解得m=,所求直线l的方程为xy+=0.圆锥曲线的弦长问题【例2】 (2018合肥市二次质检)已知椭圆E:+=1(ab0)经过点P-,椭圆E的一个焦点为(,0).(1)求椭圆E的方程;(2)若直线l过点M(0,)且与椭圆E交于A,B两点,求|AB| 的最大值.解:(1)依题意,椭圆E的左、右焦点分别为F1(-,0),F2(,0),由椭圆E经过点P-,得|PF1|+|PF2|=4=2a,所以a=2,c=,所以b2=a2-c2=1.所以椭圆E的方程为+y2=1.(2)当直线l的斜率存在时,设直线l的方程为y=kx+,A(x1,y1),B(x2,y2).由得(1+4k2)x2+8kx+4=0.由0得(8k)2-4(1+4k2)40,所以4k21.由x1+x2=-,x1x2=得|AB|=2.设t=,则0t,所以|AB|=2=2,当且仅当t=时等号成立,当直线l的斜率不存在时,|AB|=2b0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2),由消y得(4b2+a2)x2-4b2x+b2-a2b2=0,所以x1+x2=,因为c=5,所以b2=a2-c2=a2-50,所以x1+x2=,由题意知=,x1+x2=,所以=,解得a2=75,所以b2=25,方程为175x2-100x-1 850=0,即7x2-4x-74=0,此时0,故所求椭圆的标准方程为+=1.法二(点差法)设所求的椭圆方程为+=1(ab0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2).由题意,可得弦AB的中点坐标为,且=,=-.将A,B两点坐标代入椭圆方程中,得两式相减并化简,得=-=-2=3,所以a2=3b2.又c2=a2-b2=50,所以a2=75,b2=25.所以椭圆方程为+=1,把y=2x-1代入,化简得7x2-4x-74=0,此时0,故所求椭圆的标准方程为+=1.(1)对于弦的中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件0,在用“点差法”时,要检验直线与圆锥曲线是否相交.(2)圆锥曲线以P(x0,y0)(y00)为中点的弦所在直线的斜率分别是k=-椭圆+=1,k=双曲线-=1,k=(抛物线y2=2px).其中k=(x1x2),(x1,y1),(x2,y2)为弦的端点坐标.热点训练3: 过点M(1,1)的直线与椭圆+=1交于A,B两点,且点M平分弦AB,则直线AB的方程为()(A)4x+3y-7=0(B)3x+4y-7=0(C)3x-4y+1=0(D)4x-3y-1=0解析:设A(x1,y1),B(x2,y2).易得+=1,+=1,两式相减,整理得+=0.由M(1,1)是弦AB的中点得x1+x2=2,y1+y2=2,所以有+=0,得=-,即直线AB的斜率k=-,所以,直线AB的方程为y-1=-(x-1),即3x+4y-7=0.故选B.求轨迹方程考向1直接法【例4】 已知两点A(,0),B(-,0),点P为平面内一动点,过点P作y轴的垂线,垂足为Q,且=2,求动点P的轨迹方程.解:设动点P的坐标为(x,y),则点Q的坐标为(0,y),所以=(-x,0),=(-x,-y),=(-x,-y),所以=x2-2+y2.由=2,得x2-2+y2=2x2,即y2-x2=2.故动点P的轨迹方程为y2-x2=2.考向2定义法求轨迹方程【例5】 (2018郑州市二次质检)已知动圆E经过点F(1,0),且和直线x=-1相切.(1)求该动圆圆心E的轨迹G的方程;(2)已知A(3,0),若斜率为1的直线l与线段OA相交(不经过坐标原点O和点A),且与曲线G交于B,C两点,求ABC面积的最大值.解:(1)由题意可知点E到点F的距离等于点E到直线x=-1的距离,所以动点E的轨迹是以F(1,0)为焦点,直线x=-1为准线的抛物线,故轨迹G的方程是y2=4x.(2)由题意设直线l的方程为y=x+m,其中-3m0.设B(x1,y1),C(x2,y2),则x1+x2=4-2m,x1x2=m2,所以|BC|=4,又点A到直线l的距离d=,所以SABC=4=2(3+m).令=t,t(1,2),则m=1-t2,所以SABC=2t(4-t2)=8t-2t3,令f(t)=8t-2t3,则f(t)=8-6t2,易知f(t)在1,上单调递增,在,2上单调递减,所以当t(1,2)时,f(t)在t=处取得最大值,最大值为.此时m=-,满足-3m,A1(-,0),A2(,0),则有直线A1P的方程为y=(x+),直线A2Q的方程为y=(x-).联立,解得即则x0,|x|0,|AD|=,又点F2(1,0)到直线m:x=ty-1的距离为d=,所以=,令m=1,则=,因为y=3m+在1,+)上单调递增,所以当m=1即t=0时,取得最大值3,所以四边形ABF2F1面积的最大值为3.【例2】 (2018福建省质检)在平面直角坐标系xOy中,点F的坐标为0,以MF为直径的圆与x轴相切.(1)求点M的轨迹E的方程;(2)设T是轨迹E上横坐标为2的点,OT的平行线l交E于A,B两点,交E在T处的切线于点N,求证:|NT|2=|NA|NB|.(1)解:法一设点M的坐标为(x,y),因为F0,所以MF的中点坐标为,.因为以MF为直径的圆与x轴相切,所以=.即|MF|=,所以=,化简得x2=2y,所以点M的轨迹E的方程为x2=2y.法二设以MF为直径的圆的圆心为点C,与x轴的切点为D,连接CD,则CDx轴,且|MF|=2|CD|.作直线l:y=-,过点M作MNl于点H,交x轴于点I,则|CD|=,所以|MF|=|MI|+|OF|,又|IH|=|OF|=,所以|MF|=|MH|,所以点M的轨迹是以F为焦点,l为准线的抛物线,所以M的轨迹E的方程为x2=2y.(2)证明:因为T是轨迹E上横坐标为2的点,由(1)得T(2,2),所以直线OT的斜率为1.因为lOT,所以设直线l的方程为y=x+m,m0.由y=x2,得y=x,则E在点T处的切线斜率为2,所以E在点T处的切线方程为y=2x-2.由得所以N(m+2,2m+2),所以|NT|2=(m+2)-22+(2m+2)-22=5m2.由消去y得x2-2x-2m=0,由=4+8m0,得m-且m0.设A(x1,y1),B(x2,y2),则x1+x2=2,x1x2=-2m.因为点N,A,B在直线l上,所以|NA|=|x1-(m+2)|,|NB|=|x2-(m+2)|,所以|NA|NB|=2|x1-(m+2)|x2-(m+2)|=2|x1x2-(m+2)(x1+x2)+(m+2)2|=2|-2m-2(m+2)+(m+2)2|=2m2,所以|NT|2=|NA|NB|.【例3】 (2018唐山五校联考)在直角坐标系xOy中,长为+1的线段的两端点C,D分别在x轴,y轴上滑动,=.记点P的轨迹为曲线E.(1)求曲线E的方程;(2)经过点(0,1)作直线l与曲线E相交于A,B两点,=+,当点M在曲线E上时,求直线l的方程.解:(1)设C(m,0),D(0,n),P(x,y).由=,得(x-m,y)=(-x,n-y),所以得由|=+1,得m2+n2=(+1)2,所以(+1)2x2+y2=(+1)2,整理,得曲线E的方程为x2+=1.(2)设A(x1,y1),B(x2,y2),由=+,知点M的坐标为(x1+x2,y1+y2).易知直线l的斜率存在,设直线l的方程为y=kx+1,代入曲线E的方程,得(k2+2)x2+2kx-1=0,则x1+x2=-,所以y1+y2=k(x1+x2)+2=.由点M在曲线E上,知(x1+x2)2+=1,即+=1,解得k2=2.此时直线l的方程为y=x+1.【例4】 (2018长沙、南昌部分学校联合模拟)已知抛物线y2=4x,如图,过x轴上的点P作斜率分别为k1,k2的直线l1,l2,已知直线l1与抛物线在第一象限切于点A(x0,y0),直线l2与抛物线在第四象限分别交于两点B,C,记PAB,PAC的面积分别为S1,S2,且S1S2=13.(1)求点P的横坐标关于x0的表达式;(2)求的值.解:(1)当y0时,y=2,所以A(x0,2).因为直线l1与抛物线切于点A,y=,所以k1=,所以直线l1的方程为y-2=(x-x0),令y=0,得点P的横坐标xP=-x0.(2)由(1)知P(-x0,0),易得k20,所以直线l2的方程为x=y-x0.设B(x1,y1),C(x2,y2),联立直线l2与抛物线的方程,消去x得y2-y+4x0=0,所以y1+y2=,y1y2=4x0.因为S1S2=13,所以|PB|PC|=13,所以y2=3y1,代入式得=,所以k2=-,又k1=,所以=-.
展开阅读全文