2022高考数学一本策略复习 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课后训练 文

上传人:xt****7 文档编号:105800660 上传时间:2022-06-12 格式:DOC 页数:9 大小:108.50KB
返回 下载 相关 举报
2022高考数学一本策略复习 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课后训练 文_第1页
第1页 / 共9页
2022高考数学一本策略复习 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课后训练 文_第2页
第2页 / 共9页
2022高考数学一本策略复习 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课后训练 文_第3页
第3页 / 共9页
点击查看更多>>
资源描述
2022高考数学一本策略复习 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课后训练 文一、选择题1(2018合肥调研)已知x,且cossin2x,则tan等于()A.BC3D3解析:由cossin2x得sin 2xsin2x,x(0,),tan x2,tan.答案:A2(2018成都模拟)已知sin ,则cos的值为()A.B.C.D.解析:sin ,cos ,sin 22sin cos 2,cos 212sin21221,cos.答案:A3(2018昆明三中、五溪一中联考)在ABC中,内角A,B,C的对边分别为a,b,c,若ABC的面积为S,且2S(ab)2c2,则tan C等于()ABCD解析:因为2S(ab)2c2a2b2c22ab,由面积公式与余弦定理,得absin C2abcos C2ab,即sin C2cos C2,所以(sin C2cos C)24,4,所以4,解得tan C或tan C0(舍去)答案:C4在ABC中,角A,B,C所对的边分别为a,b,c,若cos A,则ABC为()A钝角三角形B直角三角形C锐角三角形D等边三角形解析:根据正弦定理得cos A,即sin Csin Bcos A.ABC,sin Csin(AB)sin Bcos A,整理得sin Acos B0,cos B0,BBDC,所以BCA,所以cosBCA.在ABC中,AB2AC2BC22ACBCcosBCA2622,所以AB,所以ABC,在BCD中,即,解得CD.答案:三、解答题13(2018武汉调研)在锐角ABC中,内角A,B,C的对边分别是a,b,c,满足cos 2Acos 2B2coscos0.(1)求角A的值;(2)若b且ba,求a的取值范围解析:(1)由cos 2Acos 2B2coscos0,得2sin2B2sin2A20,化简得sin A,又ABC为锐角三角形,故A.(2)ba,ca,C,B,sin B.由正弦定理,得,a,由sin B得a,3)14(2018唐山模拟)在ABC中,AB2AC2,AD是BC边上的中线,记CAD,BAD.(1)求sin sin ;(2)若tan sin BAC,求BC.解析:(1)AD为BC边上的中线,SACDSABD,ACADsin ABADsin ,sin sin ABAC21.(2)tan sin BACsin(),sin sin()cos ,2sin sin()cos ,2sin()sin()cos ,sin()cos 2cos()sin ,sin()2cos()tan ,又tan sin BACsin()0,cos()cos BAC,在ABC中,BC2AB2AC22ABACcos BAC3,BC.15(2018广州模拟)已知a,b,c是ABC中角A,B,C的对边,且3cos Bcos C23sin Bsin C2cos2A.(1)求角A的大小;(2)若ABC的面积S5,b5,求sin Bsin C的值解析:(1)由3cos Bcos C23sin Bsin C2cos2A,得3cos(BC)22cos2A,即2cos2A3cos A20,即(2cos A1)(cos A2)0,解得cos A或cos A2(舍去)因为0A,所以A.(2)由Sbcsin Abc5,得bc20,因为b5,所以c4.由余弦定理a2b2c22bccos A,得a2251622021,故a.根据正弦定理,得sin Bsin Csin Asin A.16(2018山西八校联考)在ABC中,a,b,c分别是内角A,B,C的对边,且(ac)2b23ac.(1)求角B的大小;(2)若b2,且sin Bsin(CA)2sin 2A,求ABC的面积解析:(1)由(ac)2b23ac,整理得a2c2b2ac,由余弦定理得cos B,0B,B.(2)在ABC中,ABC,即B(AC),故sin Bsin(AC),由已知sin Bsin(CA)2sin 2A可得sin(AC)sin(CA)2sin 2A,sin Acos Ccos Asin Csin Ccos Acos Csin A4sin Acos A,整理得cos Asin C2sin Acos A. 若cos A0,则A,由b2,可得c,此时ABC的面积Sbc.若cos A0,则sin C2sin A,由正弦定理可知,c2a,代入a2c2b2ac,整理可得3a24,解得a,c,此时ABC的面积Sacsin B.综上所述,ABC的面积为.17(2018常德市模拟)已知函数f(x)sin xmcos x(0,m0)的最小值为2,且图象上相邻两个最高点的距离为.(1)求和m的值;(2)若f,求f的值解析:(1)易知f(x)sin(x)(为辅助角),f(x)min2,m.由题意知函数f(x)的最小正周期为,2.(2)由(1)得f(x)sin 2xcos 2x2sin,f2sin,sin.,cos,sin sinsincos cos sin ,f2sin2sin2cos 22(12sin2)2.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!