资源描述
2022高考数学大二轮复习 专题五 立体几何 专题能力训练15 立体几何中的向量方法 理1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点.(1)设P是上的一点,且APBE,求CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DCEB,DC=EB,AB=4,tanEAB=.(1)证明:平面ADE平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,BAD=45,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD平面ABCD,四边形ABCD为正方形,PAD=90,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解 依题意,OF平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG平面ADF,所以EG平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos=-,于是sin=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos=-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明 在三棱柱ABC-A1B1C1中,CC1平面ABC,四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,ACEF.AB=BC,ACBE,AC平面BEF.(2)解 由(1)知ACEF,ACBE,EFCC1.CC1平面ABC,EF平面ABC.BE平面ABC,EFBE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),cos=-由图可得二面角B-CD-C1为钝角,二面角B-CD-C1的余弦值为-(3)证明 平面BCD的法向量为n=(2,-1,-4),G(0,2,1),F(0,0,2),=(0,-2,1),n=-2,n与不垂直,FG与平面BCD不平行且不在平面BCD内,FG与平面BCD相交.3.解 (1)因为APBE,ABBE,AB,AP平面ABP,ABAP=A,所以BE平面ABP,又BP平面ABP,所以BEBP,又EBC=120.因此CBP=30.(2)解法一:取的中点H,连接EH,GH,CH.因为EBC=120,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EMAG,CMAG,所以EMC为所求二面角的平面角.又AM=1,所以EM=CM=2在BEC中,由于EBC=120,由余弦定理得EC2=22+22-222cos 120=12,所以EC=2,因此EMC为等边三角形,故所求的角为60.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,3),C(-1,0),故=(2,0,-3),=(1,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos=因此所求的角为60.4.解 以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+11+(-1)1=0,B1EAD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).n平面B1AE,n,n,得取x=1,得平面B1AE的一个法向量n=要使DP平面B1AE,只要n,有-az0=0,解得z0=又DP平面B1AE,存在点P,满足DP平面B1AE,此时AP=5.(1)证明 设AC,BD交点为E,连接ME.因为PD平面MAC,平面MAC平面PDB=ME,所以PDME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解 取AD的中点O,连接OP,OE.因为PA=PD,所以OPAD.又因为平面PAD平面ABCD,且OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为ABCD是正方形,所以OEAD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos=由题知二面角B-PD-A为锐角,所以它的大小为(3)解 由题意知M,C(2,4,0),设直线MC与平面BDP所成角为,则sin =|cos|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明 因为AB是直径,所以BCAC.因为CD平面ABC,所以CDBC.因为CDAC=C,所以BC平面ACD.因为CDBE,CD=BE,所以四边形BCDE是平行四边形,所以BCDE,所以DE平面ACD.因为DE平面ADE,所以平面ADE平面ACD.(2)解 依题意,EB=ABtanEAB=4=1.由(1)知VC-ADE=VE-ACD=SACDDE=ACCDDE=ACBC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平 面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos=可以判断与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解 如题图甲所示,因为BO是梯形ABCD的高,BAD=45,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OPOC.而OBOP,OBOD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0x1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)(-1)=0,解得x=2,这与0x1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos |=所以PD与平面CDE所成角的正弦值为8.解 平面PAD平面ABCD,且PAD=90,PA平面ABCD,而四边形ABCD是正方形,即ABAD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.PB平面EFG,PB平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)(-2,2,0)=1(-2)+22+(-1)0=2.又|=,|=2,cos=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0m2),则DQ=2-m,点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),点A到平面EFQ的距离d=,即(2-m)2=,m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为
展开阅读全文