2022年高中数学(北师大版)选修1-2教案:第1章 例析回归分析思想

上传人:xt****7 文档编号:105680665 上传时间:2022-06-12 格式:DOC 页数:3 大小:43KB
返回 下载 相关 举报
2022年高中数学(北师大版)选修1-2教案:第1章 例析回归分析思想_第1页
第1页 / 共3页
2022年高中数学(北师大版)选修1-2教案:第1章 例析回归分析思想_第2页
第2页 / 共3页
2022年高中数学(北师大版)选修1-2教案:第1章 例析回归分析思想_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2022年高中数学(北师大版)选修1-2教案:第1章 例析回归分析思想1、相关性检验相关性检验是统计中的假设检验,根据公式计算r 的值。当|r|越接近于1,相关程度越强;当|r|越接近于0,相关程度越弱,具体步骤:(1)假设x与y不具有线性相关关系。(2)根据小频率0.05查表得出r的一个临界值。(3)根据公式计算出样本相关系数r的值。(4)统计推断,若|r|,具有线性相关关系;若|r|,不具有线性相关关系。2、线性回归分析一般情况下,在尚未断定两个变量之间是否具有线性相关关系的情况下,应先进行相关性检验,在确认具有线性相关关系后,再求回归直线方程。回归分析的一般步骤为:(1)从一组数据出发,求出两个变量的相关系数r ,确定二者之间是否具有线性相关关系。(2)如果具有线性相关关系,求出回归方程,其中是常数项,是回归系数。(3)根据回归方程,由一个变量的值,预测或控制另一个变量的值。下面通过例题加以分析: 例1、在10年期间,一城市居民的年收入与某种商品的销售额之间的关系有如下数据:第几年12345城市居民年收入x(亿元)32.231.132.935.837.1某商品销售额y (万元)25.030.034.037.039.0第几年678910城市居民年收入x(亿元)38.039.043.044.646.0某商品销售额y (万元)41.042.044.048.051.0(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y与x之间的回归直线方程。解:(1)散点图如图所示:(2)i1234567891032.231.132.935.837.138.039.043.044.646.0y25.030.034.037.039.041.042.044.048.051.0xy8059331118.61324.61446.91558163818922140.82346=14663.67,=15857,=15202.9=。查得,因r,说明该城市居民的年收入与该商品的销售额之间存在着显著的线性相关关系。,39.11.44737.9715.843,因此所求的回归直线方程是1.447x15.843。评注:在我们解答具体问题时要进行相关性检验,通过检验确认两个变量具有线性相关关系后,再求其线性回归方程。例2、测得10对父子身高(单位:英寸)如下:父亲身高(x)60626465666768707274儿子身高(y)63.665.26665.566.967.167.468.370.170(1)对变量y与x进行相关性检验;(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)如果父亲的身高为73英寸,估计儿子的身高。解:(1)=66.8,=67.01,=44794,=44941.93,4476.27,=4462.24,4490.34, =44842.4。所以,又查表得0.632。因为r,所以y 与x之间具有线性相关关系。(2)设回归直线方程为。由,67.01-0.464566.835.98。故所求的回归直线方程为y0.4645x35.98。(3)当x73时地,y0.464573+35.9869.9,所以当父亲身高为73英寸时,估计儿子的身高约为69.9英寸。评注:求回归直线方程,一般先要考查y与x是否具有线性相关关系,若具有这种关系,则这的回归曲线为直线。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!