2022年高考数学三轮冲刺 专题12 空间几何体的三视图、表面积及体积专项讲解与训练

上传人:xt****7 文档编号:105671016 上传时间:2022-06-12 格式:DOC 页数:10 大小:168KB
返回 下载 相关 举报
2022年高考数学三轮冲刺 专题12 空间几何体的三视图、表面积及体积专项讲解与训练_第1页
第1页 / 共10页
2022年高考数学三轮冲刺 专题12 空间几何体的三视图、表面积及体积专项讲解与训练_第2页
第2页 / 共10页
2022年高考数学三轮冲刺 专题12 空间几何体的三视图、表面积及体积专项讲解与训练_第3页
第3页 / 共10页
点击查看更多>>
资源描述
2022年高考数学三轮冲刺 专题12 空间几何体的三视图、表面积及体积专项讲解与训练一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样即“长对正、高平齐、宽相等” (1)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A3B2C2D.2(2)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10 B12 C14 D16【答案】(1)B(2)B【解析】(1)根据三视图可得该四棱锥的直观图(四棱锥PABCD)如图所示,将该四棱锥放入棱长为2的正方体中由图可知该四棱锥的最长棱为PD,PD2.故选B.(2)由多面体的三视图还原直观图如图所示该几何体由上方的三棱锥ABCE和下方的三棱柱BCEB1C1A1构成,其中平面CC1A1A和平面BB1A1A是梯形,则梯形的面积之和为212.故选B.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置 格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()【答案】D.【解析】由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为224,因为该几何体的体积为42,满足条件,所以俯视图可以为一个直角三角形选D.空间几何体的表面积和体积考向1由空间几何体的结构特征计算表面积与体积1柱体、锥体、台体的侧面积公式(1)S柱侧ch(c为底面周长,h为高);(2)S锥侧ch(c为底面周长,h为斜高);(3)S台侧(cc)h(c,c分别为上下底面的周长,h为斜高)2柱体、锥体、台体的体积公式(1)V柱体Sh(S为底面面积,h为高);(2)V锥体Sh(S为底面面积,h为高);(3)V台(SS)h(S,S分别为上下底面面积,h为高)(不要求记忆) (2017高考全国卷)如图,在四棱锥PABCD中,ABCD,且BAPCDP90.(1)证明:平面PAB平面PAD;(2)若PAPDABDC,APD90,且四棱锥PABCD的体积为,求该四棱锥的侧面积【解析】(1)证明:由已知BAPCDP90,得ABAP,CDPD.由于ABCD,故ABPD,从而AB平面PAD.又AB平面PAB,所以平面PAB平面PAD.考向2由三视图计算空间几何体的体积和表面积根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状第二步:由三视图中的数量标示确定该几何体的各个度量第三步:套用相应的面积公式与体积公式计算求解 格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90B63C42D.36(2)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A1836 B5418C90 D81【答案】(1)B(2)B空间几何体的表面积与体积的求法(1)据三视图求表面积、体积时,解题的关键是对所给三视图进行分析,得到几何体的直观图;(2)多面体的表面积是各个面的面积之和,求组合体的表面积时要注意重合部分的面积;(3)求规则几何体的体积时,只需确定底面与相应的高,而求一些不规则几何体的体积时,往往需采用分割或补形思想,转化求解 【对点训练】1(2019广州五校协作体第一次诊断)某几何体的三视图如图所示,则该几何体的表面积为()A.1 BC.1 D.1【答案】C.【解析】由三视图可知该几何体是一个圆柱和半个圆锥的组合体,故其表面积为1221,选C.2(2017高考山东卷)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为_【答案】:2【解析】:由题意知该几何体是由一个长方体和两个圆柱体构成,其中长方体的体积V12112,两个圆柱体的体积之和V21212,所以该几何体的体积VV1V22.与球有关的切、接问题考向1外接球 (1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABC. D.(2)已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SAAC,SBBC,三棱锥SABC的体积为9,则球O的表面积为_【答案】(1)B(2)36【解析】(1)球心到圆柱的底面的距离为圆柱高的,球的半径为1,则圆柱底面圆的半径r ,故该圆柱的体积V()21,故选B.(2)设球O的半径为R,因为SC为球O的直径,所以点O为SC的中点,连接AO,OB,因为SAAC,SBBC,所以AOSC,BOSC,因为平面SCA平面SCB,平面SCA平面SCBSC,所以AO平面SCB,所以VSABCVASBCSSBCAO(SCOB)AO,即9(2RR)R,解得R3,所以球O的表面积为S4R243236.考向2内切球 (1)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V的最大值是()A4BC6 D.(2)如图,在圆柱O1O2 内有一个球O,该球与圆柱的上、下底面及母线均相切记圆柱O1O2 的体积为V1 ,球O的体积为V2 ,则的值是_ 格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A136 B34C25 D18【答案】B.【解析】由三视图知,该四棱锥的底面是边长为3的正方形、高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3、3、4的长方体,该长方体外接球的半径R即为该四棱锥外接球的半径,所以2R,解得R,所以该四棱锥外接球的表面积为4R234,选B.7(2018合肥质量检测(二)一个几何体的三视图及其尺寸如图所示,则该几何体的体积为()A. BC28 D226【答案】A.【解析】由三视图知,该几何体为三棱台,其上、下底面分别是直角边为2,4的等腰直角三角形,高为2,所以该几何体的体积V22442,故选A.8一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为()A726 B724C486 D484【答案】A.【解析】由三视图知,该几何体由一个正方体的部分与一个圆柱的部分组合而成(如图所示),其表面积为162(164)24(22)726,故选A.9(2019广西三市联考)如图是某几何体的三视图,则该几何体的体积为()A6 B9C12 D18【答案】B.【解析】该几何体是一个直三棱柱截去所得,如图所示,其体积为3429.10(2019贵阳检测)三棱锥PABC的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16,则该三棱锥的高的最大值为()A4 B6C8 D10【答案】C.【解析】依题意,设题中球的球心为O、半径为R,ABC的外接圆半径为r,则,解得R5,由r216,解得r4,又球心O到平面ABC的距离为3,因此三棱锥PABC的高的最大值为538,选C. (2)在平面PCBM内,过点M作MNBC交BC于点N,连接AN,则CNPM1,又PMBC,所以四边形PMNC为平行四边形,所以PCMN且PCMN,由(1)得PC平面ABC,所以MN平面ABC,在ACN中,AN2AC2CN22ACCNcos 1203,即AN.又AM2,所以在RtAMN中,MN1,所以PCMN1.在平面ABC内,过点A作AHBC交BC的延长线于点H,则AH平面PMC,因为ACCN1,ACB120,所以ANC30.所以在RtAHN中,AHAN,而SPMC11,所以VPMACVAPMC.6(2019成都第一次诊断性检测)如图(1),在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且.将AED,CFD,BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图(2)所示(1)求证:GR平面PEF;(2)若正方形ABCD的边长为4,求三棱锥PDEF的内切球的半径【解析】:(1)证明:在正方形ABCD中,A,ABC,C为直角所以在三棱锥PDEF中,PE,PF,PD两两垂直所以PD平面PEF.因为,即,所以在PDH中,RGPD.所以GR平面PEF.(2)正方形ABCD边长为4.由题意知,PEPF2,PD4,EF2,DF2.所以SPEF2,SDPFSDPE4.SDEF26.设三棱锥PDEF内切球的半径为r,则三棱锥的体积VPDEF224(SPEF2SDPFSDEF)r,解得r.所以三棱锥PDEF的内切球的半径为.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!