(新课标)2020版高考数学二轮复习 第一部分 基础考点 自主练透 第1讲 选择、填空题的特殊解法学案 文 新人教A版

上传人:彩*** 文档编号:105585319 上传时间:2022-06-12 格式:DOC 页数:11 大小:2.64MB
返回 下载 相关 举报
(新课标)2020版高考数学二轮复习 第一部分 基础考点 自主练透 第1讲 选择、填空题的特殊解法学案 文 新人教A版_第1页
第1页 / 共11页
(新课标)2020版高考数学二轮复习 第一部分 基础考点 自主练透 第1讲 选择、填空题的特殊解法学案 文 新人教A版_第2页
第2页 / 共11页
(新课标)2020版高考数学二轮复习 第一部分 基础考点 自主练透 第1讲 选择、填空题的特殊解法学案 文 新人教A版_第3页
第3页 / 共11页
点击查看更多>>
资源描述
第1讲选择、填空题的特殊解法方法一特值(例)排除法方法诠释使用前提使用技巧常见问题特例法是根据题设和各选项的具体情况和特点,选取满足条件的特殊的数值、特殊的点、特殊的例子、特殊的图形、特殊的位置、特殊的函数、特殊的方程、特殊的数列等,针对各选项进行代入对照,结合排除法,从而得到正确的答案满足当一般性结论成立时,对符合条件的特殊化情况也一定成立找到满足条件的合适的特殊化例子,或举反例排除,有时甚至需要两次或两次以上的特殊化例子才可以确定结论求范围、比较大小、求值或取值范围、恒成立问题、任意性问题等而对于函数图象的判别、不等式、空间线面位置关系等不宜直接求解的问题,常通过排除法解决.真题示例技法应用(2019高考全国卷)若ab,则()Aln(ab)0 B3a0 D|a|b|取a1,b2,则ab,可验证A,B,D错误,只有C正确答案:C(2019高考全国卷)函数f(x)在,的图象大致为()取特殊值,x,结合函数的奇偶性进行排除,答案选D.答案:D(2019高考全国卷)记不等式组表示的平面区域为D.命题p:(x,y)D,2xy9;命题q:(x,y)D,2xy12.下面给出了四个命题pq綈pqp綈q綈p綈q这四个命题中,所有真命题的编号是()ABC D取x4,y5,满足不等式组且满足2xy9,不满足2xy12,故p真,q假所以真,假答案:A真题示例技法应用(2018高考全国卷)右图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.ABC的三边所围成的区域记为,黑色部分记为,其余部分记为.在整个图形中随机取一点,此点取自,的概率分别记为p1,p2,p3,则()Ap1p2Bp1p3Cp2p3 Dp1p2p3不妨设三角形ABC为等腰直角三角形,过A作AO垂直BC于O,则区域,的面积相等答案:A(2015高考全国卷)设Sn是等差数列an的前n项和若a1a3a53,则S5()A5B7C9D11取常数列an1代入计算答案:A1计算()A2B2C1 D1解析:选D.取,则原式1.2如图所示,两个不共线向量,的夹角为,M,N分别为OA与OB的中点,点C在直线MN上,且xy(x,yR),则x2y2的最小值为()A. B.C. D.解析:选B.特殊值法:当90,且|1时,以O为坐标原点,以,分别为x轴、y轴的正方向,建立平面直角坐标系,由xy,得xy,所以x2y2的最小值为原点O到直线xy的距离的平方,易得x2y2.3已知E为ABC的重心,AD为BC边上的中线,令a,b,若过点E的直线分别交AB,AC于P,Q两点,且ma,nb,则()A3 B4C5 D.解析:选A.由于题中直线PQ的条件是过点E,所以该直线是一条“动”直线,所以最后的结果必然是一个定值故可利用特殊直线确定所求值法一:如图1,PQBC,则,此时mn,故3,故选A.法二:如图2,取直线BE作为直线PQ,显然,此时,故m1,n,所以3.4已知函数f(x)若存在x1,x2R,且x1x2,使f(x1)f(x2),则实数a的取值范围为()Aa2 B3a5Ca2或3a1,则f(x)2,显然存在x11,x21,满足f(x1)f(x2),故a4符合题意,排除A选项故选C.方法二验证法方法诠释使用前提使用技巧常见问题验证法是把选择支代入题干中进行检验,或反过来从题干中找合适的验证条件,代入各选择支中进行检验,从而可否定错误选择支而得到正确选择支的一种方法.选项中存在唯一正确的选择支.可以结合特例法、排除法等先否定一些明显错误的选项,再选择直觉认为最有可能的选项进行验证,这样可以快速获取答案.题干信息不全,选项是数值或范围,正面求解或计算烦琐的问题等.真题示例技法应用(2018高考全国卷)已知函数f(x)2cos2xsin2x2,则()Af(x)的最小正周期为,最大值为3Bf(x)的最小正周期为,最大值为4Cf(x)的最小正周期为2,最大值为3Df(x)的最小正周期为2,最大值为4当sin x0,cos x1时,函数值为4,所以A,C错;把x代入函数验证可得f(x)f(x),说明D错,故选B.答案:B(2018高考全国卷)下列函数中,其图象与函数yln x的图象关于直线x1对称的是()Ayln(1x Byln(2x)Cyln(1x) Dyln(2x)函数yln x的图象过定点(1,0),而(1,0)关于直线x1的对称点还是(1,0),将(1,0)代入各选项,验证可知只有B满足,故选B.答案:B(2019高考天津卷)已知函数f(x)若关于x的方程f(x)xa(aR)恰有两个互异的实数解,则a的取值范围为()A.B.C.1 D.1选取四个选项的差异值a1,a代入验证答案:D1过点A(3,2)且与椭圆1有相同焦点的椭圆方程为()A.1B.1C.1 D.1解析:选A.将点A(3,2)代入选择支得A正确2函数f(x)xexlg x10的零点所在的区间为()A(0,1) B(1,2)C(2,3) D(3,4)解析:选B.f(x)xexlg x10在(0,)上单调递增,且f(1)0,所以函数f(x)xexlg x10的零点所在的区间为(1,2),故选B.3已知函数f(x)sin(其中0)的图象的一条对称轴方程为x,则的最小值为()A2 B4C10 D16解析:选B.若2,当x时,有fsin,不符合题意;若4,当x时,有fsin 1,符合题意所以的最小值为4.4设函数f(x)若f(1)是f(x)的最小值,则实数a的取值范围是()A1,2) B1,0C1,2 D1,)解析:选C.若a2时,f(x)2|x2|在(,1上单调递减,f(x)f(1)当x1时,f(x)x12,所以f(1)是f(x)的最小值,排除A、B.若a3时,f(x)2|x3|在(,1上单调递减,f(x)f(1)4.当x1时,f(x)x12.不满足f(1)是f(x)的最小值,排除D.方法三估算法学生用书P方法诠释使用前提使用技巧常见问题由于选择题提供了唯一正确的答案,解答又不需提供过程,因此可以通过猜测、合情推理、估算而获得答案这样往往可以减少运算量,加强思维的层次估算省去了很多推导过程和复杂的计算,节省了时间,从而显得快捷.针对一些复杂的、不易准确求值的与计算有关的问题常与特值法结合起来使用.对于数值计算常采用放缩估算、整体估算、近似估算、特值估算等,对于几何体问题,常进行分割、拼凑、位置估算.求几何体的表面积、体积,三角函数的求值,求双曲线、椭圆的离心率,求参数的范围等.真题示例技法应用(2019高考全国卷)已知alog20.2,b20.2,c0.20.3,则()Aabc BacbCcab Dbca因为alog20.21,0c0.20.3ca.故选B.答案:B(2017高考全国卷)函数f(x)sin(x)cos(x)的最大值为()A. B1C. D.当x时,f(x)大于1,故选A.答案:A(2017高考全国卷)若a1,则双曲线y21的离心率的取值范围是()A(,) B(,2)C(1,) D(1,2)用a表示离心率e的表达式,根据a1,估算e的取值范围答案:C(2018高考全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为()A12 B18C24 D54等边三角形ABC的面积为9,显然球心不是此三角形的中心,所以三棱锥体积最大时,三棱锥的高h(4,8),所以94V三棱锥DABC98,即12V三棱锥DABC0,b0)的一条渐近线经过点(3,4),则此双曲线的离心率为()A.B.C. D.解析:选D.因为双曲线的一条渐近线经过点(3,4),所以.因为e,所以e.故选D.2若0,sin cos a,sin cos b,则()AabCab2解析:选A.若0,则sin cos a1;若,则sin cos b.结合选项分析选A.3某班设计了一个八边形的班徽(如图所示),它由四个腰长为1,顶角为的等腰三角形和一个正方形组成,则该八边形的面积为()A2sin 2cos 2 Bsin cos 3C3sin cos 1 D2sin cos 1解析:选A.当顶角时,八边形几乎是边长为2的正方形,面积接近于4,四个选项中,只有A符合,故选A.4P为双曲线1(a0,b0)右支上的一点,F1,F2分别是双曲线的左、右焦点,则PF1F2的内切圆圆心的横坐标为()AaBbC. Dab解析:选A.如图,点P沿双曲线向右顶点无限接近时,PF1F2的内切圆越来越小,直至“点圆”,此“点圆”应为右顶点,则内切圆圆心的横坐标为a,故选A.方法四构造法学生用书P方法诠释使用前提使用技巧常见问题构造法是一种创造性的解题方法,它很好地体现了数学中的发散、类比、转化思想利用已知条件和结论的特殊性构造函数、数列、方程或几何图形等,从而简化推理与计算过程,使较复杂或不易求解的数学问题得到简捷解答构造法来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经类似的问题中找到构造的灵感.构造的函数、方程、图形等要合理,不能超越原题的条件限制.对于不等式、方程、函数问题常构造新函数,对于不规则的几何体常构造成规则的几何体处理.比较大小、函数导数问题、不规则的几何体问题等.真题示例技法应用(2018高考全国卷)在长方体ABCDA1B1C1D1中,ABBC1,AA1,则异面直线AD1与DB1所成角的余弦值为()A. B.C.D.在长方体ABCDA1B1C1D1的面ABB1A1一侧再补添一个完全一样的长方体ABC2D2A1B1B2A2,求AB2D1中D1AB2的余弦值即可答案:C(2016高考全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)构造正方体,将正方体中的有关棱与面看作问题中的有关直线与平面,逐一判断答案:续表真题示例技法应用(2015高考全国卷)设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x0时,xf(x)f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0) D(0,1)(1,)根据题意构造新函数g(x),对g(x)求导再解答案:A(2015高考全国卷)设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_.由an1Sn1Sn,将原等式变形,再构造等差数列求解答案:1已知数列an的前n项和为Sn,a12,Sn12Sn1(nN*),则a10()A128B256C512 D1 024解析:选B.因为Sn12Sn1,所以Sn112(Sn1),所以Sn1是等比数列,且公比为2,又S11a111,所以Sn12n1,所以Sn2n11,所以a10S10S92928256.故选B.2如图,已知球O的球面上有四点A,B,C,D,DA平面ABC,ABBC,DAABBC,则球O的体积等于_解析:如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以CD2R,所以R,故球O的体积V.答案:3已知f(x)为定义在(0,)上的可导函数,且f(x)xf(x)恒成立,则不等式x2ff(x)0的解集为_解析:设g(x),则g(x),又因为f(x)xf(x),所以g(x)0gg(x),则有1.答案:(1,)- 11 -
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!