2022年高中数学 第三章 第一课时 两角和与差的余弦教案 苏教版必修3

上传人:xt****7 文档编号:105507682 上传时间:2022-06-12 格式:DOC 页数:7 大小:47.02KB
返回 下载 相关 举报
2022年高中数学 第三章 第一课时 两角和与差的余弦教案 苏教版必修3_第1页
第1页 / 共7页
2022年高中数学 第三章 第一课时 两角和与差的余弦教案 苏教版必修3_第2页
第2页 / 共7页
2022年高中数学 第三章 第一课时 两角和与差的余弦教案 苏教版必修3_第3页
第3页 / 共7页
点击查看更多>>
资源描述
2022年高中数学 第三章 第一课时 两角和与差的余弦教案 苏教版必修3教学目标:掌握两角和与差的余弦公式,能用公式进行简单的求值;培养学生的应用意识,提高学生的数学素质.教学重点:余弦的差角公式及简单应用教学难点:余弦的差角公式的推导教学过程:.课题导入在前面咱们共同学习了任意角的三角函数,在研究三角函数时,我们还常常会遇到这样的问题:已知任意角、的三角函数值,如何求、或2的三角函数值?即:、或2的三角函数值与、的三角函数值有什么关系?.讲授新课接下来,我们继续考虑如何把两角差的余弦cos()用、的三角函数来表示的问题.在直角坐标系xOy中,以Ox轴为始边分别作角、,其终边分别与单位圆交于P1(cos,sin)、P2(cos,sin),则P1OP2.由于余弦函数是周期为2的偶函数,所以,我们只需考虑0的情况.设向量a(cos,sin),b(cos,sin),则:ababcos ()cos ()另一方面,由向量数量积的坐标表示,有abcoscossinsin所以:cos ()coscossinsin (C()两角和的余弦公式对于任意的角、都是成立的,不妨,将此公式中的用代替,看可得到什么新的结果?cos ()cos cos ()sinsin()cos cos sinsin即:cos ()cos cos sinsin (C()请同学们观察这一关系式与两角差的余弦公式,看这两式有什么区别和联系?(1)这一式子表示的是任意两角与的差的余弦与这两角的三角函数的关系.(2)这两式均表示的是两角之和或差与这两角的三角函数的关系.请同学们仔细观察它们各自的特点.(1)两角之和的余弦等于这两角余弦之积与其正弦之积的差.(2)两角之差的余弦等于这两角余弦之积与其正弦之积的和.不难发现,利用这一式子也可求出一些与特殊角有关的非特殊角的余弦值.如:求cos 15可化为求cos(4530)或cos(6045)利用这一式子而求得其值.即:cos 15cos(4530)cos 45cos 30sin45sin30或:cos 15cos (6045)cos 60cos 45sin60sin45请同学们将此公式中的用代替,看可得到什么新的结果?cos()coscos sinsinsin即:cos()sin再将此式中的用代替,看可得到什么新的结果.cos()cossin()即:sin()cos.课堂练习1.求下列三角函数值cos (4530)cos 105解:cos(4530)cos 45cos 30sin45sin30cos 105cos (6045)cos 60cos 45sin60sin452.若cos cos ,cos()1,求sinsin.解:由cos()coscossinsin得:sinsincoscoscos()将coscos,cos()1代入上式可得:sinsin3.求cos 23cos 22sin23sin22的值.解:cos 23cos 22sin23sin22cos(2322)cos 454.若点P(3,4)在角终边上,点Q(1,2)在角的终边上,求cos ()的值.解:由点P(3,4)为角终边上一点;点Q(1,2)为角终边上一点,得:cos ,sin;cos,sin.cos()coscossinsin()()()5.已知cos(),cos(),求:tantan的值.解:由已知cos(),cos()可得:cos()cos()即:2coscoscos()cos()1即:2sinsin1由得tantantantan的值为.6.已知coscos,sinsin,求:cos ()的值.解:由已知coscos得:cos 22cos cos cos 2 由sinsin得:sin22sinsinsin2由得:22(coscossinsin)即:22cos()cos().课时小结两公式的推导及应用.课后作业课本P96习题 1,2,3两角和与差的余弦1下列命题中的假命题是 ( )A.存在这样的和的值,使得cos()coscossinsinB.不存在无穷多个和的值,使得cos()coscossinsinC.对于任意的和,都有cos()coscossinsinD.不存在这样的和值,使得cos()coscossinsin2在ABC中,已知cos Acos BsinAsin,则AB一定是钝角三角形吗?3已知sinsin,求coscos的最大值和最小值.4已知:(,),(0,),且cos(),sin()求:cos ().5已知:、为锐角,且cos,cos(),求cos的值.6在ABC中,已知sinA,cosB,求cos C的值.两角和与差的余弦答案1B2在ABC中,已知cos Acos BsinAsin,则AB一定是钝角三角形吗?解:在ABC中,0C,且ABC即:ABC由已知得cos Acos BsinAsinB0,即:cos(AB)0cos(C)cos C0,即cos C0C一定为钝角ABC一定为钝角三角形.3已知sinsin,求coscos的最大值和最小值.分析:令coscosx,然后利用函数思想.解:令coscosx,则得方程组:22得22cos ()x2cos ()|cos ()|1, | |1解之得:xcoscos的最大值是,最小值是.4已知:(,),(0,),且cos(),sin()求:cos ().解:由已知:(,)(,)(,0)又cos (), sin()由(0,)(,)又sin()sin()sin()即sin(), cos()又()()cos()cos()()cos()cos()sin()sin()()5已知:、为锐角,且cos,cos(),求cos的值.解:0,0由cos (),得sin()又cos,sincoscos()cos()cos sin()sin()评述:在解决三角函数的求值问题时,一定要注意已知角与所求角之间的关系.6在ABC中,已知sinA,cosB,求cos C的值.分析:本题中角的限制范围就隐含在所给的数字中,轻易忽视,就会致错.解:由sinA知0A45或135A180,又cos B,60B90,sinB若135A180则AB180不可能.0A45,即cos A.cos Ccos(AB).
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!