九年级数学 第1讲 二次函数探究-二次函数与相似三角形的综合问题教案

上传人:xt****7 文档编号:105444754 上传时间:2022-06-12 格式:DOC 页数:10 大小:138KB
返回 下载 相关 举报
九年级数学 第1讲 二次函数探究-二次函数与相似三角形的综合问题教案_第1页
第1页 / 共10页
九年级数学 第1讲 二次函数探究-二次函数与相似三角形的综合问题教案_第2页
第2页 / 共10页
九年级数学 第1讲 二次函数探究-二次函数与相似三角形的综合问题教案_第3页
第3页 / 共10页
点击查看更多>>
资源描述
九年级数学 第1讲 二次函数探究-二次函数与相似三角形的综合问题教案教学过程二次函数与相似三角形的综合问题知识点二次函数综合;勾股定理;相似三角形的性质;教学目标1. 熟练运用所学知识解决二次函数综合问题2灵活运用数形结合思想教学重点巧妙运用数形结合思想解决综合问题;教学难点灵活运用技巧及方法解决综合问题;教学过程1.定理:直角三角形两直角边a,b的平方和等于斜边c的平方。(即:a2+b2=c2) 2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题3.逆定理:如果三角形的三边长:a,b,c,则有关系a2+b2=c2,那么这个三角形是直角三角形。4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边为c。(2)验证c2和a2+b2是否具有相等的关系,若a2+b2=c2,则ABC是以C为直角的直角三角形。三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax2+bx+c(a,b,c是常数且a0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据当b=c=0时,二次函数y=ax2是最简单的二次函数2.二次函数y=ax2+bx+c(a,b,c是常数,a0)的三种表达形式分别为:一般式:y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a(xh)2+k,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a(xx1)(xx2),通常要知道图像与x轴的两个交点坐标x1,x2才能求出此解析式;对于y=ax2+bx+c而言,其顶点坐标为(,)对于y=a(xh)2+k而言其顶点坐标为(h,k),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点考点2 相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。2.性质定理:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.考点3 探究三角形相似的一般思路解答三角形相似的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及到动态问题要以静制动,动中求静,具体如下:(1)假设结论成立,分情况讨论。探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现让证明两个三角形相似的题目)或涉及到动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,从而分情况讨论;(2)确定分类标准:在分类时,先要找出分类的标准,看两个三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角来分类讨论;(3)建立关系式并计算。由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标;四、例题精析考点一 在函数中运用“SAS”判定定理构造相似三角形例1 直线分别交x轴、y轴于A、B两点,AOB绕点O按逆时针方向旋转90后得到COD,抛物线yax2bxc经过A、C、D三点(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由例2如图,已知点A (-2,4) 和点B (1,0)都在抛物线上(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB 的交点为C,试在x轴上找一个点D,使得以点B、C、D为顶点的三角形与ABC相似考点二 运用相似三角形的性质解决二次函数综合问题例3如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=时,在直线AB下方的抛物线上求点P,使ABP的面积等于5;(3)若在抛物线上存在定点D使ADB=90,求点D到直线AB的最大距离 例4如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=x2+bx+c(c0)的顶点为D,与y轴的交点为C,过点C作CAx轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD(1)若点A的坐标是(4,4)求b,c的值;试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由课程小结有针对性的对勾股定理、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与相似三角形的综合问题提供有利的依据。在探究二次函数与相似三角形的综合问题时,抓住已有的信息及条件在函数图像中构造出相似三角形,并能运用相似三角形的性质解决问题,掌握此类问题的解题思路及技巧是解决问题的关键。解析例1(1)A(3,0),B(0,1),C(0,3),D(1,0)(2)因为抛物线yax2bxc经过A(3,0)、C(0,3)、D(1,0) 三点,所以 解得 所以抛物线的解析式为yx22x3(x1)24,顶点G的坐标为(1,4)(3)如图2,直线BG的解析式为y3x1,直线CD的解析式为y3x3,因此CD/BG因为图形在旋转过程中,对应线段的夹角等于旋转角,所以ABCD因此ABBG,即ABQ90因为点Q在直线BG上,设点Q的坐标为(x,3x1),那么RtCOD的两条直角边的比为13,如果RtABQ与RtCOD相似,存在两种情况:当时,解得所以,当时,解得所以, 【总结与反思】1图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角2用待定系数法求抛物线的解析式,用配方法求顶点坐标3第(3)题判断ABQ90是解题的前提4ABQ与COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个例2【规范解答】(1) 因为点A (-2,4) 和点B (1,0)都在抛物线上,所以 解得,(2)如图2,由点A (-2,4) 和点B (1,0),可得AB5因为四边形A ABB为菱形,所以A ABB AB5因为,所以原抛物线的对称轴x1向右平移5个单位后,对应的直线为x4因此平移后的抛物线的解析式为图2(3) 由点A (-2,4) 和点B (6,0),可得A B如图2,由AM/CN,可得,即解得所以根据菱形的性质,在ABC与BCD中,BACCBD如图3,当时,解得此时OD3,点D的坐标为(3,0)如图4,当时,解得此时OD,点D的坐标为(,0) 【总结与反思】1点A与点B的坐标在3个题目中处处用到,各具特色第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B 的坐标、AC和BC的长2抛物线左右平移,变化的是对称轴,开口和形状都不变3探求ABC与BCD相似,根据菱形的性质,BACCBD,因此按照夹角的两边对应成比例,分两种情况讨论例3【规范解答】解:(1)当x=2时,y=(2)k+2k+4=4直线AB:y=kx+2k+4必经过定点(2,4)点C的坐标为(2,4)(2)k=,直线的解析式为y=x+3联立,解得:或点A的坐标为(3,),点B的坐标为(2,2)过点P作PQy轴,交AB于点Q,过点A作AMPQ,垂足为M,过点B作BNPQ,垂足为N,如图1所示设点P的横坐标为a,则点Q的横坐标为AyP=a2,yQ=a+3点P在直线AB下方,PQ=yQyP=a+3a2AM+NB=a(3)+2a=5SAPB=SAPQ+SBPQ=PQAM+PQBN=PQ(AM+BN)=(a+3a2)5=5整理得:a2+a2=0解得:a1=2,a2=1当a=2时,yP=(2)2=2此时点P的坐标为(2,2)当a=1时,yP=12=此时点P的坐标为(1,)符合要求的点P的坐标为(2,2)或(1,)(3)过点D作x轴的平行线EF,作AEEF,垂足为E,作BFEF,垂足为F,如图2AEEF,BFEF,AED=BFD=90ADB=90,ADE=90BDF=DBFAED=BFD,ADE=DBF,AEDDFB设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2AE=yAyE=m2t2BF=yByF=n2t2ED=xDxE=tm,DF=xFxD=nt,=化简得:mn+(m+n)t+t2+4=0点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,m、n是方程kx+2k+4=x2即x22kx4k8=0两根m+n=2k,mn=4k84k8+2kt+t2+4=0,即t2+2kt4k4=0即(t2)(t+2k+2)=0t1=2,t2=2k2(舍)定点D的坐标为(2,2)过点D作x轴的平行线DG,过点C作CGDG,垂足为G,如图3所示点C(2,4),点D(2,2),CG=42=2,DG=2(2)=4CGDG,DC=2过点D作DHAB,垂足为H,如图3所示,DHDCDH2当DH与DC重合即DCAB时,点D到直线AB的距离最大,最大值为2点D到直线AB的最大距离为2【总结与反思】(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可(2)只需联立两函数的解析式,就可求出点A、B的坐标设出点P的横坐标为a,运用割补法用a的代数式表示APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标(3)设点A、B、D的横坐标分别为m、n、t,从条件ADB=90出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题例4【规范解答】(1)ACx轴,A点坐标为(4,4)点C的坐标是(0,4)把A、C代入yx2+bx+c得, 得,解得;四边形AOBD是平行四边形;理由如下:由得抛物线的解析式为yx24x+4,顶点D的坐标为(2,8),过D点作DEAB于点E,则DE=OC=4,AE=2,AC=4,BC=AC=2,AE=BCACx轴,AED=BCO=90,AEDBCO,AD=BODAE=BCO,ADBO,四边形AOBD是平行四边形(2)存在,点A的坐标可以是(2,2)或(2,2)要使四边形AOBD是矩形;则需AOB=BCO=90,ABO=OBC,ABOOBC,=,又AB=AC+BC=3BC,OB=BC,在RtOBC中,根据勾股定理可得:OC=BC,AC=OC,C点是抛物线与y轴交点,OC=c,A点坐标为(c,c),顶点横坐标=c,b=c,将A点代入可得c=+cc+c,横坐标为c,纵坐标为c即可,令c=2,A点坐标可以为(2,2)或者(2,2)【总结与反思】(1)将抛物线上的点的坐标代入抛物线即可求出b、c的值; 求证AD=BO和ADBO即可判定四边形为平行四边形;(2)根据矩形的各角为90可以求得ABOOBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为c,纵坐标为C
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!