2019届高考物理二轮复习 第二部分 题型研究三 计算题如何少失分学案

上传人:Sc****h 文档编号:105255726 上传时间:2022-06-11 格式:DOC 页数:104 大小:3.07MB
返回 下载 相关 举报
2019届高考物理二轮复习 第二部分 题型研究三 计算题如何少失分学案_第1页
第1页 / 共104页
2019届高考物理二轮复习 第二部分 题型研究三 计算题如何少失分学案_第2页
第2页 / 共104页
2019届高考物理二轮复习 第二部分 题型研究三 计算题如何少失分学案_第3页
第3页 / 共104页
点击查看更多>>
资源描述
题型研究三 分析近五年全国卷物理试题可以看出,计算题的呈现方式相当稳定,每卷有2道题,其中第24题难度较小,分值在1214分之间;第25题难度较大,分值在1820分之间。两题总分为32分,比重为29.1%,是命题者用以考核学生表现出来的水平差异,是拉开高考分差的重要手段。可以毫不夸张地说,这2道计算题担负着区分考生、选拔人才的重要功能。5年高考统计分析 试卷题号考点2014年2015年2016年2017年2018年合计(次)卷卷卷卷卷卷卷卷卷卷卷卷卷直线运动24242525242524、2525242411牛顿运动定律242424、25252424、2524、252524、2524、252524、2524、2520机械能25252425252424252424、2511曲线运动25252425252424252524、2511电场252425252525247电路25242424255磁场24242425242525248电磁感应252424254动量2424253从上表统计数据可以看出,牛顿运动定律考查的频率最高,其次是直线运动、机械能、曲线运动,而动量是选修35调整为必考内容后,3套全国卷均首次在计算题中进行考查;电学部分的四个考点考查频率大致相当,但都低于力学部分的四个考点。这表明计算题突出了力学的基础性地位及方法论价值,体现了必备知识、关键能力、学科素养、核心价值等4个层次课程目标的考查。计算题虽然考查的考点常见,但难度通常较大,特别是第25题,其难度成因可有以下五个方面:1题目信息量大。条件、物理量多,题干长,让人一看就感到费力难解。2一些隐含条件有时隐藏在文字语言里,有时隐藏在图表语言里,要经过分析、推理、计算才能看出其中的特殊性。3大多数题目的物理过程较多,物理情景变化让人应接不暇,心生恐惧。4物理模型难以建立。此类题一般与实际问题相结合,物理情景新颖,与常规的物理模型相比让考生感到不知从何处下手。5题目解答时所列方程较多,解题步骤繁杂,有的题目要用到数学巧解,考生难以迁移应用。为化解以上难点,本书从审题技巧、模型建立、物理方法和数学方法的应用等诸多层面入手,为考生指明破解方向。第一讲破解计算题必备的四项基本能力一、审题抓关键词深入细致地审题和抓住关键词是解题的必要前提。抓住关键词要从以下9个方面入手:1是否考虑重力在涉及电磁场的问题中常常会遇到带电微粒是否考虑重力的问题。一般带电粒子如电子、质子、粒子等具体说明的微观粒子不需要考虑重力;质量较大的如带电油滴、带电小球等要考虑重力。有些说法含糊的题目要判断有无重力,如带电微粒在水平放置的带电平行板间静止,则重力平衡电场力;再如带电微粒在正交的匀强电场和匀强磁场中做匀速圆周运动,只能是洛伦兹力提供向心力,仍然是重力平衡电场力;要特别当心那些本该有重力的物体计算时忽略了重力,这在题目中一定是有说明的,要看清楚。2物体是在哪个面内运动物理习题通常附有图形,图形又只能画在平面上,所以在看图的时候一方面要看清图上物体的位置,另一方面还要看清物体是在哪个平面内运动,或是在哪个三维空间运动。物体通常是有重力的,如果在竖直平面内,这一重力不能忽略,但如果是在水平面内,重力很可能与水平面的支持力抵消了,无需考虑。3.物理量是矢量还是标量如果题目中的已知量是矢量,要考虑它可能在哪些方向上,以免漏解;如果待求的物理量是矢量,如“求解物体在某时刻的加速度”,不仅要说明加速度的大小,还要说明其方向。 4.哪些量是已知量,哪些量是未知量有时题目较长,看了一遍以后忘记了哪些是已知量,可在已知量下划线,或在草纸上先写出已知量的代号;有些经常用到的物理量,如质量m、电荷量q或磁场的磁感应强度B,题目中并没有给出,但由于平时做题时这些量经常是给定的,自己常常就不自觉地把它们当做已知量,切记千万不能用未知量表示最后的结果,这就等于没有做题;一些常量即使题中未给出也是可以当做已知量的,如重力加速度g;同样一些常量却不能当做是已知量,如万有引力常量G,这一点在解万有引力应用类问题时要引起重视。5临界词与形容词的把握要搞清题目中的临界词的含义,这常常是题目的一个隐含条件,常见的临界词如“恰好”“足够长”“至少”“至多”等,要把握一些特定的形容词的含义,如“缓慢地”“迅速地”“突然”“轻轻地”等,力学中如物体被“缓慢地”拉到另一位置,往往表示过程中的每一步都可以认为受力是平衡的;热学中“缓慢”常表示等温过程,而“迅速”常表示绝热过程;力学中“突然”可能表示弹簧来不及形变,“轻轻地”表示物体无初速度。6注意括号里的文字有些题目中会出现条件或要求写在括号里的情况,括号里的文字并不是次要的,可有可无的,相反有时还显得特别重要。如括号里常有:取g10 m/s2、不计阻力、最后结果保留两位小数等。7抓住图像上的关键点看到图像要注意:图像的横轴、纵轴表示什么物理量;横轴、纵轴上物理量的单位;图线在横轴或纵轴上的截距;坐标原点处是否从0开始(如测电动势时的UI图电压往往是从一个较大值开始的);图线的形状和发展趋势;图像是否具有周期性。8区分物体的性质和所处的位置如物体是导体还是绝缘体;是轻绳、轻杆还是轻弹簧;物体是在圆环的内侧、外侧还是在圆管内或是套在圆环上。9容易看错的地方位移还是位置,时间还是时刻,哪个物体运动,物体是否与弹簧连接,直径还是半径,粗糙还是光滑,有无电阻等。典题例析(2016天津高考)如图所示,空间中存在着水平向右的匀强电场,电场强度大小E5 N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B0.5 T。有一带正电的小球,质量m1106 kg,电荷量q2106 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g10 m/s2。求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t。审题指导给什么用什么小球质量m1.0106 kg,电荷量q2106 C,匀强电场E5 N/C小球重力G1.0105 N,受电场力qE105 N,说明小球的重力不可忽略求什么想什么根据平衡条件确定洛伦兹力的大小和方向,进而利用F洛qvB和左手定则求解第(1)题缺什么找什么第(2)题求时间t,需要分析撤掉磁场后小球的受力情况及运动情况解析(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有qvB代入数据解得v20 m/s速度v的方向与电场E的方向之间的夹角满足tan 代入数据解得tan 60。(2)撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,设其加速度为a,有a设撤掉磁场后小球在初速度方向上的分位移为x,有xvt设小球在重力与电场力的合力方向上分位移为y,有yat2a与mg的夹角和v与E的夹角相同,均为,又tan 联立式,代入数据解得t2 s3.5 s。答案(1)20 m/s,方向与电场方向成60角斜向上(2)3.5 s二、析题建物理模型计算题因情景新颖、表述抽象常让考生感到老虎吃天、无从下口,要想快速找到解题突破口,就需把生活问题转化为物理问题,这个过程就叫“建模”。从方法和目的角度而言,建模就是将研究对象或物理过程通过抽象、简化和类比等方法转化为理想的物理模型。1解计算题时通常建立的模型条件模型把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型。例如物体沿水平面运动时所受摩擦力对运动的影响不起主要作用,或需要假设一种没有摩擦力的环境引入光滑平面的模型,其他如不计质量的绳子、轻质杠杆、只受重力作用或不计重力作用、均匀介质、匀强电场和匀强磁场等过程模型把具体运动过程纯粹化、理想化后抽象出来的一种物理过程,称为过程模型。例如把某些复杂的运动过程纯粹化、理想化,看做是一个质点(对象模型)做单一的某种运动。如:匀速直线运动、匀加速直线运动、匀速圆周运动等2运用物理模型解题的基本程序(1)通过审题,提取题目信息。如:物理现象、物理事实、物理情景、物理状态、物理过程等。(2)弄清题给信息的诸因素中什么是主要因素。(3)寻找与已有信息(熟悉的知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括、或逻辑推理、或原型启发,建立起新的物理模型,将新情景问题转化为常规问题。(4)选择相关的物理规律求解。典题例析(2016江苏高考)回旋加速器的工作原理如图甲所示,置于真空中的D形金属盒半径为R。两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直。被加速粒子的质量为m、电荷量为q,加在狭缝间的交变电压如图乙所示,电压值的大小为U0,周期T。一束该种粒子在t0时间内从A处均匀地飘入狭缝,其初速度视为零。现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用。求:甲 乙(1)出射粒子的动能Em;(2)粒子从飘入狭缝至动能达到Em所需的总时间t0;(3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件。物理建模解析(1)粒子运动半径为R时qvBm且Emmv2解得Em。(2)粒子被加速n次达到动能Em,则EmnqU0粒子在狭缝间做匀加速运动,设n次经过狭缝的总时间为t加速度a匀加速直线运动ndat2由t0(n1)t,解得t0。(3)只有在0时间内飘入的粒子才能每次均被加速则所占的比例为由99%,解得d。答案(1)(2)(3)d三、破题分解物理过程近年来,一些高考计算题甚至是压轴题,越来越注重考查多过程的问题。所谓多过程问题就是由多个模型在时间和空间上有机的组合在一起形成的问题。对于这类问题,要化整为零,逐个击破。物理多过程的呈现方式大体有以下三种:串联式若多过程问题涉及的几个过程是先后出现的,一般涉及一个物体的运动。解题的方法是按时间先后顺序将整个过程拆成几个子过程,然后对每个子过程运用规律列式求解。 (2016全国卷)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l。现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接。AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示。物块P与AB间的动摩擦因数0.5。用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动。重力加速度大小为g。(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围。解析(1)依题意,当弹簧竖直放置,长度被压缩至l时,质量为5m的物体的动能为零,其重力势能转化为弹簧的弹性势能。由机械能守恒定律,弹簧长度为l时的弹性势能为Ep5mgl设P的质量为M,到达B点时的速度大小为vB,由能量守恒定律得EpMvB2Mg4l联立式,取Mm并代入题给数据得vB若P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足mg0设P滑到D点时的速度为vD,由机械能守恒定律得mvB2mvD2mg2l联立式得vDvD满足式要求,故P能运动到D点,并从D点以速度vD水平射出。设P落回到轨道AB所需的时间为t,由运动学公式得2lgt2P落回到AB上的位置与B点之间的距离为svDt联立式得s2l。(2)为使P能滑上圆轨道,它到达B点时的速度不能小于零。由式可知5mglMg4l要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C。由机械能守恒定律有MvB2Mgl联立式得mMm。答案(1)2l(2)mMm 并列式若多过程问题涉及的几个过程是同时出现的,一般涉及多个物体的运动。解决的关键是从空间上将复杂过程拆分成几个子过程,然后对各子过程运用规律列式求解。(2015全国卷)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图(a)所示。t0时刻开始,小物块与木板一起以共同速度向右运动,直至t1 s时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1 s时间内小物块的v t图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2。求:(1)木板与地面间的动摩擦因数1及小物块与木板间的动摩擦因数2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离。思路点拨解析(1)规定向右为正方向。木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1,小物块和木板的质量分别为m和M。由牛顿第二定律有1(mM)g(mM)a1由题图(b)可知,木板与墙壁碰撞前瞬间的速度v14 m/s,由运动学公式有v1v0a1t1s0v0t1a1t12式中,t11 s,s04.5 m是木板碰撞前的位移,v0是小物块和木板开始运动时的速度。联立式和题给条件得10.1在木板与墙壁碰撞后,木板以v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速运动。设小物块的加速度为a2,由牛顿第二定律有2mgma2由题图(b)可得a2式中,t22 s,v20,联立式和题给条件得20.4。(2)设碰撞后木板的加速度为a3,经过时间t,木板和小物块刚好具有共同速度v3。由牛顿第二定律及运动学公式得2mg1(Mm)gMa3v3v1a3tv3v1a2t碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为s1t小物块运动的位移为s2t小物块相对木板的位移为ss2s1联立式,并代入数值得s6.0 m 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m。(3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a4,此过程中小物块和木板运动的位移为s3。由牛顿第二定律及运动学公式得1(mM)g(mM)a40v322a4s3碰后木板运动的位移为ss1s3联立式,并代入数值得s6.5 m木板右端离墙壁的最终距离为6.5 m。答案(1)0.10.4 (2)6.0 m(3)6.5 m复合式若多过程问题在时间和空间上均存在多个过程,一定会涉及多个物体的运动。解题时要从时间和空间上将涉及的几个子过程一一拆分出来,然后运用规律列式求解。 (2015天津高考)如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g。求:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;(2)磁场上下边界间的距离H。思路点拨 解析(1)设磁场的磁感应强度大小为B,cd边刚进入磁场时,线框做匀速运动的速度为v1,cd边上的感应电动势为E1,由法拉第电磁感应定律,有E12Blv1设线框总电阻为R,此时线框中电流为I1,由闭合电路欧姆定律,有I1设此时线框所受安培力为F1,有F12I1Lb由于线框做匀速运动,其受力平衡,有mgF1由式得v1设ab边离开磁场之前线框做匀速运动的速度为v2,同理可得v2由式得v24v1。(2)线框自释放直到cd边进入磁场前,由机械能守恒定律,有2mglmv12线框完全穿过磁场的过程中,由能量守恒定律,有mg(2lH)mv22mv12Q由式得H28l。答案(1)4倍(2)28l四、解题运用数学知识数学是解决物理问题的重要工具,借助数学方法可使一些复杂的物理问题显示出明显的规律性。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。物理高考考试大纲明确要求考生必须具备“应用数学处理物理问题的能力,能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论,能运用几何图形、函数图像进行表达、分析”。常见的数学思想方程函数思想、数形结合思想、分类讨论思想、化归转化思想常见的数学方法三角函数法、数学比例法、图像求解法、几何图形法、数列极限法、数学极值法、导数微元法、解析几何法、分类讨论法、数学归纳法等解题一般程序审题物理过程分析建立物理模型应用数学思想或方法求解答案并验证典题例析(2015江苏高考)一台质谱仪的工作原理如图所示,电荷量均为q、质量不同的离子飘入电压为U0的加速电场,其初速度几乎为零。这些离子经加速后通过狭缝O沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场,最后打在底片上。已知放置底片的区域MNL,且OML。某次测量发现MN中左侧区域MQ损坏,检测不到离子,但右侧区域QN仍能正常检测到离子。在适当调节加速电压后,原本打在MQ的离子即可在QN检测到。(1)求原本打在MN中点P的离子质量m;(2)为使原本打在P的离子能打在QN区域,求加速电压U的调节范围;(3)为了在QN区域将原本打在MQ区域的所有离子检测完整,求需要调节U的最少次数。(取lg 20.301,lg 30.477,lg 50.699)思路点拨解析(1)离子在电场中加速,qU0mv2在磁场中做匀速圆周运动,qvBm解得r0 代入r0L,解得m。(2)由(1)知,U,离子打在Q点时,rL,得U离子打在N点时,rL,得U则电压的范围U。(3)由(1)可知,r由题意知,第1次调节电压到U1,使原本Q点的离子打在N点,此时,原本半径为r1的打在Q1的离子打在Q上,解得r12L第2次调节电压到U2,原来打在Q1的离子打在N点,原本半径为r2的打在Q2的离子打在Q上,则,解得r23L同理,第n次调节电压,有rnn1L检测完整,有rn,解得n12.8最少次数为3次。答案(1)(2)U(3)最少次数为3次第二讲力学计算题的解题方略与命题视角第1课时解题方略解答力学计算题必备“4组合意识”分析近几年的高考物理试题,力学计算题的鲜明特色在于组合,通过深入挖掘力学计算题的内在规律,在解题时,考生必须具备四种“组合意识”。只有具备了这四种组合意识,才能对力学组合大题化繁为简、化整为零,找准突破口快解题。一、“元素组合”意识力学计算题经常出现一体多段、两体多段,甚至多体多段等多元素的综合性题目。试题中常出现的“元素组合”如下:运动力学计算题变化多样,但大多数是对上述“元素组合”框架图的各种情景进行排列组合。阅读题目时首先要理清它的元素组合,建立模型,找到似曾相识的感觉,降低对新题、难题的心理障碍。典题例析(2018黔东南州二模)如图所示,让小球从图中的C位置由静止开始摆下,摆到最低点D处,摆线刚好拉断,小球在粗糙的水平面上由D点向右做匀减速运动滑向A点,到达A孔进入半径R0.3 m的竖直放置的光滑圆弧轨道,当小球进入圆轨道立即关闭A孔,已知摆线长为L2.5 m,60,小球质量为m1 kg,小球可视为质点,D点与小孔A的水平距离s2 m,g取10 m/s2,试求:(1)摆线能承受的最大拉力为多大?(2)要使小球能进入圆轨道并能通过圆轨道的最高点,求小球与粗糙水平面间的动摩擦因数的范围。元素组合小球轻绳竖直平面DA粗糙段恒力匀减速运动竖直平面圆周运动。解析(1)小球由C到D运动过程做圆周运动,摆球的机械能守恒,则有:mgL(1cos )mvD2小球运动到D点时,由牛顿第二定律可得:Fmmgm联立两式解得:Fm2mg20 N。(2)小球刚好能通过圆轨道的最高点时,在最高点由牛顿第二定律可得:mgm小球从D到圆轨道的最高点过程中,由动能定理得:mgs2mgRmv2mvD2解得:0.25即要使小球能进入圆轨道并能通过圆轨道的最高点,0.25。答案(1)20 N(2)0.25对点训练1.如图所示,电动机带动滚轮做逆时针匀速转动,在滚轮的摩擦力作用下,将一金属板从光滑斜面底端A送往斜面上端,斜面倾角30,滚轮与金属板的切点B到斜面底端A距离L6.5 m,当金属板的下端运动到切点B处时,立即提起滚轮使其与板脱离。已知板的质量m1103 kg,滚轮边缘线速度v4 m/s,滚轮对板的正压力FN2104 N,滚轮与金属板间的动摩擦因数为0.35,g取10 m/s2。求:(1)在滚轮作用下板上升的加速度大小;(2)金属板的下端经多长时间到达滚轮的切点B处;(3)金属板沿斜面上升的最大距离。解析:(1)受力正交分解后,沿斜面方向由牛顿第二定律得FNmgsin ma1解得a12 m/s2。(2)由运动规律得va1t1解得t12 s匀加速上升的位移为x1t14 m匀速上升需时间t2 s0.625 s共经历tt1t22.625 s。(3)滚轮与金属板脱离后向上做减速运动,由牛顿第二定律得mgsin ma2解得a25 m/s2金属板做匀减速运动,则板与滚轮脱离后上升的距离x2 m1.6 m金属板沿斜面上升的最大距离为xmLx26.5 m1.6 m8.1 m。答案:(1)2 m/s2(2)2.625 s(3)8.1 m二、“思想组合”意识一道经典的力学计算题宛如一个精彩的物理故事,处处蕴含着物理世界“平衡”与“守恒”这两种核心思想。复习力学计算题应牢牢抓住这两种思想,不妨构建下列“思想组合”框架图:平衡思想体现出对运动分析和受力分析的重视。运动分析与受力分析可以互为前提,也可以互为因果。如果考查运动分析,物体保持静止或匀速直线运动是平衡状态,其他运动则是不平衡状态,选用的运动规律截然不同。类似地,如果考查受力分析,也分为两种:F合0或者F合ma。F合0属于受力平衡,牛顿第二定律F合ma则广泛应用于受力不平衡的各种情形。若更复杂些,则应追问是稳态平衡还是动态平衡,考查平衡位置还是平衡状态。高中物理守恒思想主要反映的是能量与动量恒定不变的规律。能量与动量虽不同于运动与受力,但不同的能量形式对应于不同的运动形式,不同的动量形式也对应于不同的受力形式,所以本质上能量与动量来源于物体运动与受力规律的推演,是运动与受力分析的延伸。分析能量与动量的关键是看选定的对象是单体还是系统。如果采用隔离法来分析单个物体,一般先从动能定理或动量定理的角度思考。如果采用整体法来分析多个物体组成的系统,则能量守恒或动量守恒的思维更有优势。思想不同,思考方向就会不同。在宏观判断题目考查平衡还是守恒后,才能进一步选对解题方法。典题例析质量为m木、长度为d的木块放在光滑的水平面上,木块的右边有一个销钉把木块挡住,使木块不能向右滑动,质量为m的子弹以水平速度v0按如图所示的方向射入木块,刚好能将木块射穿,现将销钉拔去,使木块能在水平面上自由滑动,而子弹仍以初速度v0射入静止的木块,求:(1)子弹射入木块的深度是多少;(2)从子弹开始进入木块到子弹相对木块静止的过程中,木块的位移是多少;(3)在这一过程中产生多少内能。思想组合解析(1)设子弹所受阻力为f则木块不动时:v022d木块自由时,子弹与木块组成的系统动量守恒:mv0(mm木)v对子弹:v02v22x1对木块:v22x2子弹射入木块的深度lx1x2由以上五式可联立解得:ld。(2)由(1)问所列关系式可解得:x2d。(3)由能量守恒定律可得在这一过程中产生的内能Qmv02(m木m)v2。答案(1)d(2)d(3)对点训练2(2019届高三包头九中模拟)一质量为2 kg物块放在粗糙的水平面上。物块与水平面间的动摩擦因数为0.2,现对物块施加F120 N的水平拉力使物块做初速度为零的匀加速运动,F1作用2 s后撤去,等物块又运动4 s后再对物块施加一个与F1方向相反的水平拉力F2,F220 N,F2也作用2 s后撤去,重力加速度大小g10 m/s2,求:(1)F2作用多长时间,物块的速度减为零?(2)物块运动过程中离出发点最远距离为多少?解析:(1)设F1的方向为正方向,从开始运动到撤去F2的过程中,根据动量定理F1t1mg(t1t2t3)F2t30解得t3 s。(2)F1作用时物块运动的加速度大小为a18 m/s2作用2 s末,物块速度大小为v1a1t116 m/s运动的位移大小为x1v1t116 m撤去F1后物块运动的加速度大小为a2g2 m/s2运动4 s末,物块的速度大小为v2v1a2t28 m/s此过程运动的位移大小为x2(v1v2)t248 mF2作用直到物块速度为零的过程中,物块运动的加速度大小为a312 m/s2此过程运动的位移为:x3 m因此物块运动过程中离出发点最远距离为xx1x2x3 m。答案:(1) s(2) m三、“方法组合”意识透彻理解平衡和守恒思想后,具体解题主要使用3种方法:受力与运动的方法、做功与能量的方法、冲量与动量的方法。这三条主线是一个庞大的体系,光是公式就多达几十个,不单学习时难以记忆,解题时也容易混淆。为获得顺畅的思路,笔者删繁就简,整理成如下的“方法组合”框架图。动力法动力法的特征是涉及加速度,主要用于解决物体受力情况与物体运动状态的关系。已知受力求运动,先从力F代表的F合0或F合ma写起,进而得出运动参数x、v、t或、t。已知运动求受力,则从x、v、t或、t代表的各种运动规律写起,从右向左反向得出物体所受的力F功能法功能法主要用于解决不涉及时间的情形。若不涉及时间,使用动能定理较为普遍。若不涉及时间又需研究能量,则优先使用E代表的能量关系,特别是能量守恒定律冲动法若涉及时间,冲动法中的动量定理可以简化计算。动量守恒定律是物理学史上最早发现的一条守恒定律,其适用范围比牛顿运动定律更广。面对多体问题,学生选择合适的系统并运用动量守恒定律来解决,往往更加便捷当然,在应用上述三种方法时,学生一定要注意各个公式的适用范围,不能生搬硬套,例如动量守恒定律的应用前提需先考虑系统所受合外力是否为零。有些问题只需一个方法就能解决,也可能是多种方法联合求解,学生只有经过反复实践才能灵活选用。典题例析光滑水平面上放着质量mA1 kg的物块A与质量mB2 kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能Ep49 J。在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R0.5 m,B恰能到达最高点C。g取10 m/s2,求:(1)绳拉断后瞬间B的速度vB的大小;(2)绳拉断过程绳对B的冲量I的大小;(3)绳拉断过程绳对A所做的功W。方法组合(1)(2)(3)解析(1)设B在绳被拉断后瞬间的速度为vB,到达C时的速度为vC,由牛顿第二定律得mBgmB由机械能守恒定律得mBvB2mBvC22mBgR代入数据得vB5 m/s。(2)设弹簧恢复到自然长度时B的速度为v1,取水平向右为正方向,有EpmBv12由动量定理得ImBvBmBv1代入数据得I4 Ns,其大小为4 Ns。(3)设绳断后A的速度为vA,取水平向右为正方向,由动量守恒定律得mBv1mBvBmAvAWmAvA2代入数据得W8 J。答案(1)5 m/s(2)4 Ns(3)8 J对点训练3(2018黔东南州一模)如图所示,足够长的水平直轨道与倾斜光滑轨道BC平滑连接,B为光滑轨道的最低点。小球a从直轨道上的A点以v0 m/s的初速度向右运动,与静止在B点的小球b发生弹性正碰,碰撞后小球b上升的最大高度h0.2 m。已知A、B两点的距离x0.5 m,小球与水平直轨道的摩擦阻力f为重力的0.1倍,空气阻力忽略不计,重力加速度g10 m/s2。求:(1)两球相碰前的瞬间小球a的速度大小;(2)两球相碰后的瞬间小球b的速度大小;(3)小球a和小球b的质量之比。解析:(1)设小球a与小球b碰撞前瞬间的速度为v1,由动能定理:fxmav12mav02其中f0.1mag带入数据得:v13 m/s。(2)设a、b两球碰撞后b球的速度为vb,小球b碰后沿光滑轨道上升的过程中机械能守恒。由机械能守恒定律:mbvb2mbgh解得:vb2 m/s。(3)a、b两球发生弹性碰撞。设碰撞后a球的速度为va,由动量和机械能守恒定律有:mav1mavambvbmav12mava2mbvb2由得:vbv1由得:。答案:(1)3 m/s(2)2 m/s(3)12四、“步骤组合”意识构建以上三个组合的目的是引导学生整合知识网络,提升解题效率。但学生在做题时,即使面对平时比较熟悉的物理情景,有时仍会不知道如何表述。为了切入题目,可尝试使用“对象过程原理列式”这4个步骤来书写,如下图所示。通过运用“四步法”框架图,学生的解题思路可以更加清晰:首先找出对象,明确过程,然后分析原理,选定公式。在文字的规范表达方面,“四步法”也是一种范式,表述会更加全面。典题例析(2018东北育才中学三模)如图所示,一竖直光滑绝缘的管内有一劲度系数为k的绝缘弹簧,其下端固定于地面,上端与一质量为m,带电荷量为q的小球A相连,整个空间存在一竖直向上的匀强电场,小球A静止时弹簧恰为原长,另一质量也为m的不带电的绝缘小球B从距A为x0的P点由静止开始下落,与A发生碰撞后一起向下运动,全过程中小球A的电量不发生变化,重力加速度为g。(1)若x0已知,试求B与A碰撞过程中损失的机械能;(2)若x0未知,且B与A在最高点恰未分离,试求A、B运动到最高点时弹簧的形变量;(3)在满足第(2)问的情况下,试求A、B运动过程中的最大速度。步骤组合(1)(2)(3)(4)解析(1)设匀强电场的场强为E,在碰撞前A静止时有:qEmg解得E在与A碰撞前B的速度为v0,由机械能守恒定律得:mgx0mv02解得v0B与A碰撞后共同速度为v1,由动量守恒定律得:mv02mv1解得v1v0B与A碰撞过程中损失的机械能E为:Emv022mv12mgx0。(2)A、B在最高点恰不分离,此时A、B加速度相等,且它们间的弹力为零,设此时弹簧的伸长量为x1,则:对B:mgma对A:mgkx1qEma所以弹簧的伸长量为:x1。(3)A、B一起运动过程中合外力为零时,具有最大速度vm,设此时弹簧的压缩量为x2,则:2mg(qEkx2)0解得x2由于x1x2,说明A、B在最高点处与合外力为零处弹簧的弹性势能相等,对此过程由能量守恒定律得:(2mgqE)(x1x2)2mvm2解得vmg 。答案(1)mgx0(2)(3)g对点训练4(2018天水一中一模)如图所示,水平地面上固定有A、B两个等高的平台,之间静止放置一长为5l、质量为m的小车Q,小车的上表面与平台等高,左端靠近平台A。轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l。现将该弹簧水平放置,一端固定在平台A的左端,另一端与质量为m的小物块P(可视为质点)接触但不连接。另一弹簧水平放置,一端固定在平台B的右端。现用外力推动物块P,将弹簧压缩至长度l,然后由静止释放,P开始沿平台运动并滑上小车,当小车右端与平台B刚接触时,物块P恰好滑到小车右端且相对小车静止。小车与平台相碰后立即停止运动,但不粘连,物块P滑上平台B,与弹簧作用后再次滑上小车。已知平台A的长度为2l,物块P与平台A间的动摩擦因数0.5,平台B、水平地面光滑,重力加速度大小为g,求:(1)物块P离开平台A时的速度大小;(2)平台A右端与平台B左端间的距离;(3)若在以后运动中,只要小车与平台相碰,则小车立即停止运动,求物块P最终停止的位置距小车右端多远。解析:(1)设弹簧压缩最短时,弹簧的弹性势能为Ep。由机械能守恒得:Ep5mgl设物块P离开A平台的速度为v0,由能量守恒得:Epmglmv02解得:v03。(2)设物块P运动到小车最右端与小车的共同速度为v1,从物块P离开平台A到物块与小车共速过程中,物块位移为s1,小车位移为s2,由动量守恒得:mv02mv1对物块P:fs1mv12mv02对小车:fs2mv12s1s25l联立得平台A右端与平台B左端间的距离为:ss17.5l。(3)由能量守恒可知,物块离开平台B时,速度为v1,设物块P与小车再次共速时速度为v2,从物块P离开平台B到物块与小车共速过程中,物块位移为s3,小车位移为s4,由动量守恒得:mv12mv2对物块P:fs3mv22mv12对小车:fs4mv22设小车与平台A碰后,物块运动的位移为s5,由动能定理得fs50mv22联立解得物块P最终停止的位置距小车右端为:ss3s4s5。答案:(1)3(2)7.5l(3)l第2课时命题研究力与运动计算题常考“4题型”题型一运动学问题运动学问题单独作为计算题的话,要么是两个物体运动的关系问题的讨论,要么是多过程多情景的复杂问题的分析,试题难度往往较大。一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性的撞击。坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0 s。在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动。该旅客在此后的20.0 s内,看到恰好有30节货车车厢被他连续超过。已知每根铁轨的长度为25.0 m,每节货车车厢的长度为16.0 m,货车车厢间距忽略不计。求:(1)客车运行速度的大小;(2)货车运行加速度的大小。解析(1)设连续两次撞击铁轨的时间间隔为t,每根铁轨的长度为l,则客车速度为v其中l25.0 m,t s,解得v37.5 m/s。(2)法一:设从货车开始运动后t20.0 s内客车行驶了s1米,货车行驶了s2米,货车的加速度为a,30节货车车厢的总长度为L3016.0 m。由运动学公式有s1vts2at2由题给条件有Ls1s2联立解得a1.35 m/s2。第2问,实质是运动学中的追及相遇问题法二:第2问图像法:如图所示为客车和货车的vt图像,图中阴影部分面积对应30节车厢的总长度。L30l480 m可得:tL480 m把v37.5 m,t20 s代入上式得a1.35 m/s2。答案(1)37.5 m/s(2)1.35 m/s2破解运动学类问题的关键是寻找两个运动之间的联系:一是时间关系,二是位移关系。寻找的方法有两种:画vt图像或者画出运动过程草图,并在图中标明各运动学量,包括时刻、时间、位移、速度、加速度等已知量和未知量,然后根据运动关系列式求解。题型二运动学与牛顿运动定律的综合问题牛顿运动定律是动力学的基础,牛顿运动定律与运动学规律相结合形成动力学的两类基本问题,也是高考计算题命题的热点和重点。公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1 s。当汽车在晴天干燥沥青路面上以108 km/h的速度匀速行驶时,安全距离为120 m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的。若要求安全距离仍为120 m,求汽车在雨天安全行驶的最大速度。解析设路面干燥时,汽车与地面间的动摩擦因数为0,刹车时汽车的加速度大小为a0,安全距离为s,反应时间为t0,由牛顿第二定律和运动学公式得0mgma0sv0t0式中,m和v0分别为汽车的质量和刹车前的速度。设在雨天行驶时,汽车与地面间的动摩擦因数为,依题意有0设在雨天行驶时汽车刹车的加速度大小为a,安全行驶的最大速度为v,由牛顿第二定律和运动学公式得mgmasvt0联立式并代入题给数据得v20 m/s(或72 km/h)。答案20 m/s(或72 km/h)(1)根据力的观点,物体做什么样的运动,完全是由物体的速度和受力情况这两个方面决定的,所以应用力的观点的关键是要做好运动分析和受力分析。(2)若系统内各物体的加速度不相同,又需要知道物体间的相互作用力时,则应利用隔离法分析。如本例中A、B的加速度大小相等,方向相反。属于加速度不相同的情况。 题型三滑块滑板类问题滑块滑板类题型是指由木板和物块组成的相互作用的系统,是近年高考物理试题中的经典题型。题中常涉及摩擦力的方向判断和大小计算、牛顿运动定律及运动学规律等知识。(2017全国卷)如图,两个滑块A和B的质量分别为mA1 kg和mB5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5;木板的质量为m4 kg,与地面间的动摩擦因数为20.1。某时刻A、B两滑块开始相向滑动,初速度大小均为v03 m/s。A、B相遇时,A与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g10 m/s2。求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离。审题指导(1)(2)(3)(4)解析(1)滑块A和B在木板上滑动时,木板也在地面上滑动。设A、B和木板所受的摩擦力大小分别为f1、f2和f3,A和B相对于地面的加速度大小分别为aA和aB,木板相对于地面的加速度大小为a1。在滑块B与木板达到共同速度前有f11mAgf21mBgf32(mmAmB)g由牛顿第二定律得f1mAaAf2mBaBf2f1f3ma1设在t1时刻,B与木板达到共同速度,其大小为v1。由运动学公式有v1v0aBt1v1a1t1联立式,代入已知数据得v11 m/s。(2)在t1时间间隔内,B相对于地面移动的距离为sBv0t1aBt12设在B与木板达到共同速度v1后,木板的加速度大小为a2。对于B与木板组成的体系,由牛顿第二定律有f1f3(mBm)a2由式知,aAaB;再由式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反。由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2。设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2v1a2t2对A有v2v1aAt2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1v1t2a2t22在(t1t2)时间间隔内,A相对地面移动的距离为sAv0(t1t2)aA2A和B相遇时,A与木板的速度也恰好相同。因此A和B开始运动时,两者之间的距离为s0sAs1sB联立以上各式,并代入数据得s01.9 m。(也可用如图所示的速度时间图线求解)答案(1)1 m/s(2)1.9 m1临界条件(1)滑块与滑板存在相对滑动的临界条件运动学条件:若两物体速度和加速度不等,则会相对滑动。动力学条件:假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体“所需要”的摩擦力Ff;比较Ff与最大静摩擦力Ffm的关系,若FfFfm,则发生相对滑动。(2)滑块滑离滑板的临界条件当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件。2常见解法“滑块滑板类”模型问题往往存在一题多解情况,常见的解法如下:(1)动力学分析法:分别对滑块和滑板受力分析,根据牛顿第二定律求出各自加速度,然后结合运动学公式求解。(2)相对运动分析法:从相对运动的角度出发,根据相对初速度、相对加速度、相对末速度和相对位移的关系x相对(t),往往可大大简化数学运算过程。(3)图像描述法:有时利用运动vt图像分析更快捷。例如,一物块以初速度v0滑上在水平地面上静止的木板,物块和木板的运动图像如图甲或图乙所示。图甲表示物块在滑出木板前已经与木板共速,阴影部分面积表示相对位移x相对,x相对;图乙表示物块已滑出木板,阴影部分面积表示木板总长度L,x相对L。对点训练1.质量M9 kg、长L1 m的木板在动摩擦因数10.1的水平地面上向右滑行,当速度v02 m/s时,在木板的右端轻放一质量m1 kg的小物块,如图所示。当小物块刚好滑到木板左端时,物块和木板达到共同速度。取g10 m/s2。求:(1)从物块放到木板上到它们达到相同速度所用的时间t;(2)小物块与木板间的动摩擦因数2。解析:法一动力学分析法(1)设木板的加速度大小为a1,在时间t内的位移为x1;物块的加速度
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!