资源描述
2022年高三数学 考试清单 考点一 集合、简易逻辑1集合的含义与表示(1)了解集合的含义、体会元素与集合的属于关系(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集(2)在具体情境中,了解全集与空集的含义3集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集(3)能使用Venn图表达集合间的基本关系及集合的基本运算 1.2命题及其关系、充分条件与必要条件1理解命题的概念2了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系3理解必要条件、充分条件与充要条件的意义1.3简单的逻辑联结词、全称量词与存在量词1了解逻辑联结词“或”“且”“非”的含义2理解全称量词与存在量词的意义3能正确地对含有一个量词的命题进行否定考点难度本题属于基础题型,难度不大。特别注意近年来部分创新定义题型有一定难度,需加强题目的广度和深度练习,避免失分。高考题型示例1(xx山东理2)已知集合,则(A) (B) (C) (D) 【解析】求。答案:D2(xx山东理7)命题“对任意的,”的否定是(A)不存在, (B)存在,(C)存在, (D)对任意的,【解析】注意两点:1)全称命题变为特称命题;2)只对结论进行否定。答案:C3(xx山东理9)下列各小题中,是的充要条件的是(1)或;有两个不同的零点。(2) 是偶函数。(3) 。(4) 。(A) (B) (C) (D) 【解析】(2)由可得,但的定义域不一定关于原点对称;(3)是的既不充分也不必要条件。答案:D4、(xx山东理1)满足且的集合的个数是(A)1(B)2 (C)3 (D)4【解析】本题考查集合子集的概念及交集运算。 集合中必含有则答案:B5.(xx山东理1)集合,若,则的值为( )A.0 B.1 C.2 D.4【解析】:,故选D.答案:D【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.6、(xx山东理1)已知全集U=R,集合M=x|x-1|2,则(A)x|-1x3 (B)x|-1x3 (C)x|x3 (D)x|x-1或x3【答案】C【解析】因为集合,全集,所以,故选C.【命题意图】本题考查集合的补集运算,属容易题.7、(山东xx理1)设集合,则A. B. C. D. 解析:,答案应选A。8、(山东xx理1)已知全集=0,1,2,3,4,集合A=1,2,3,,B=2,4 ,则(CuA)B为A 1,2,4 B 2,3,4 C 0,2,4 D 0,2,3,4解析:。答案选C。9(xx山东,理2)已知集合A0,1,2,则集合Bxy|xA,yA中元素的个数是()A1 B3 C5 D9答案:C解析:当x,y取相同的数时,xy0;当x0,y1时,xy1;当x0,y2时,xy2;当x1,y0时,xy1;当x2,y0时,xy2;其他则重复故集合B中有0,1,2,1,2,共5个元素,应选C.10(xx山东,理7)给定两个命题p,q,若p是q的必要而不充分条件,则p是q的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件答案:A解析:由题意:qp,pq,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p是q的充分而不必要条件故选A. 11、(xx山东,理2)设集合则( )(A) 0,2 (B) (1,3) (C) 1,3) (D) (1,4) 答案:C
展开阅读全文