资源描述
2022年高三数学大一轮复习 12.2古典概型教案 理 新人教A版 xx高考会这样考1.考查古典概型概率公式的应用;2.考查古典概型与事件关系及运算的综合题;3.与统计知识相结合,考查解决综合问题的能力复习备考要这样做1.掌握解决古典概型的基本方法,列举基本事件、随机事件,从中找出基本事件的总个数,随机事件所含有的基本事件的个数;2.复习时要加强与统计相关的综合题的训练,注重理解、分析、逻辑推理能力的提升1 基本事件的特点(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和2 古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型(1)试验中所有可能出现的基本事件只有有限个(2)每个基本事件出现的可能性相等3 如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A).4 古典概型的概率公式P(A).难点正本疑点清源1 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点有限性和等可能性,只有同时具备这两个特点的概型才是古典概型2 从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I,基本事件的个数n就是集合I的元素个数,事件A是集合I的一个包含m个元素的子集故P(A).1 甲、乙、丙三名同学站成一排,甲站在中间的概率是_答案解析甲共有3种站法,故站在中间的概率为.2 从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是_答案解析从6个数中任取2个数的可能情况有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种,其中和为偶数的情况有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6种,所以所求的概率是.3 从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是()A. B. C. D.答案D解析基本事件的个数有5315,其中满足ba的有3种,所以ba的概率为.4 一个口袋内装有2个白球和3个黑球,则先摸出1个白球后放回的条件下,再摸出1个白球的概率是 ()A. B. C. D.答案C解析先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为.5 (xx广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A. B. C. D.答案D解析个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类(1)当个位为奇数时,有5420(个)符合条件的两位数(2)当个位为偶数时,有5525(个)符合条件的两位数因此共有202545(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P.题型一基本事件例1有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”思维启迪:由于出现的结果有限,每次每颗只能有四种结果,且每种结果出现的可能性是相等的,所以是古典概型由于试验次数少,故可将结果一一列出解(1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4)探究提高基本事件的确定可以使用列举法和树形图法用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率解所有可能的基本事件共有27个,如图所示(1)记“3个矩形都涂同一颜色”为事件A,由图,知事件A的基本事件有133(个),故P(A).(2)记“3个矩形颜色都不同”为事件B,由图,可知事件B的基本事件有236(个),故P(B).题型二古典概型问题例2有编号为A1,A2,A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径1.511.491.491.511.491.511.471.461.531.47其中直径在区间1.48,1.52内的零件为一等品(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个用零件的编号列出所有可能的抽取结果;求这2个零件直径相等的概率思维启迪:确定基本事件总数,可用列举法确定事件所包含的基本事件数,用公式求解解(1)由所给数据可知,一等品零件共有6个,记“从10个零件中,随机抽取一个,这个零件为一等品”为事件A,则P(A).(2)一等品零件的编号为A1,A2,A3,A4,A5,A6,从这6个一等品零件中随机抽取2个,所有可能的结果有A1,A2,A1,A3,A1,A4,A1,A5,A1,A6,A2,A3,A2,A4,A2,A5,A2,A6,A3,A4,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共15种“从一等品零件中,随机抽取2个,这2个零件直径相等”记为事件B,则其所有可能结果有A1,A4,A1,A6,A4,A6,A2,A3,A2,A5,A3,A5,共6种,所以P(B).探究提高求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择(xx上海)三位同学参加跳高、跳远、铅球项目的比赛若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_(结果用最简分数表示)答案解析三位同学每人选择三项中的两项有CCC33327(种)选法,其中有且仅有两人所选项目完全相同的有CCC33218(种)选法所求概率为P.题型三古典概型的综合应用例3为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170185 cm之间的概率;(3)从样本中身高在180190 cm之间的男生中任选2人,求至少有1人身高在185190 cm之间的概率思维启迪:先根据统计图确定样本的男生人数,身高在170185 cm之间的人数和概率,再确定身高在180190 cm之间的人数,转化成古典概型问题解(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170185 cm之间的学生有141343135(人),样本容量为70,所以样本中学生身高在170185 cm之间的频率f0.5.故由f估计该校学生身高在170185 cm之间的概率P0.5.(3)样本中身高在180185 cm之间的男生有4人,设其编号为,样本中身高在185190 cm之间的男生有2人,设其编号为.从上述6人中任选2人的树状图为故从样本中身高在180190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185190 cm之间的可能结果数为9,因此,所求概率P0.6.探究提高有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:94,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率解(1)设该厂这个月共生产轿车n辆,由题意得,所以n2 000,则z2 000100300150450600400.(2)设所抽样本中有a辆舒适型轿车,由题意得,则a2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个故P(E),即所求概率为.(3)样本平均数(9.48.69.29.68.79.39.08.2)9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D包含的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D),即所求概率为.六审细节更完善典例:(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求nm2的概率审题路线图(1)基本事件为取两个球(两球一次取出,不分先后,可用集合的形式表示)把取两个球的所有结果列举出来1,2,1,3,1,4,2,3,2,4,3,4两球编号之和不大于4(注意:和不大于4,应为小于4或等于4)1,2,1,3利用古典概型概率公式P(2)两球分两次取,且有放回(两球的编号记录是有次序的,用坐标的形式表示)基本事件的总数可用列举法表示(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)(注意细节,m是第一个球的编号,n是第2个球的编号)nm2的情况较多,计算复杂(将复杂问题转化为简单问题)计算nm2的概率nm2的所有情况为(1,3),(1,4),(2,4)P1(注意细节,P1是nm2的概率,需转化为其对立事件的概率)nm2的概率为1P1.规范解答解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个从袋中取出的球的编号之和不大于4的事件共有1,2,1,3两个因此所求事件的概率P.4分(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个6分又满足条件nm2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件nm2的事件的概率为P1.10分故满足条件nm2的事件的概率为1P11.12分温馨提醒(1)本题在审题时,要特别注意细节,使解题过程更加完善如第(1)问,注意两球一起取,实质上是不分先后,再如两球编号之和不大于4等;第(2)问,有次序(2)在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏同时要注意细节,如用列举法,第(1)问应写成1,2的形式,表示无序,第(2)问应写成(1,2)的形式,表示有序(3)本题解答时,存在格式不规范,思维不流畅的严重问题如在解答时,缺少必要的文字说明,没有按要求列出基本事件在第(2)问中,由于不能将事件n0且1,即a0且2ba.若a1,则b2,1;若a2,则b2,1,1;若a3,则b2,1,1;若a4,则b2,1,1,2;若a5,则b2,1,1,2.故满足题意的事件包含的基本事件的个数为2334416.因此所求概率为.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1 投掷两颗骰子,得到其向上的点数分别为m和n,则复数(mni)(nmi)为实数的概率为()A. B. C. D.答案C解析复数(mni)(nmi)2mn(n2m2)i为实数,则n2m20mn,而投掷两颗骰子得到点数相同的情况只有6种,所以所求概率为.2 宋庆龄基金会计划给西南某干旱地区援助,6家矿泉水企业参与了竞标其中A企业来自浙江省,B,C两家企业来自福建省,D,E,F三家企业来自河南省此项援助计划从两家企业购水,假设每家企业中标的概率相同则在中标的企业中,至少有一家来自河南省的概率是 ()A. B. C. D.答案A解析在六家矿泉水企业中,选取两家有15种情况,其中至少有一家企业来自河南的有12种情况,故所求概率为.3 连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(1,1)的夹角90的概率是()A. B. C. D.答案A解析(m,n)(1,1)mnn.基本事件总共有6636(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,4),(6,1),(6,5),共1234515(个)P,故选A.二、填空题(每小题5分,共15分)4 (xx重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为_(用数字作答)答案解析6节课随机安排,共有A720(种)方法课表上相邻两节文化课之间最多间隔1节艺术课,分三类:第1类:文化课之间没有艺术课,有AA624144(种)第2类:文化课之间有1节艺术课,有ACAA6326216(种)第3类:文化课之间有2节艺术课,有AAA66272(种)共有14421672432(种)由古典概型概率公式得P.5. 如图在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点在A、P、M、C中任取一点记为E,在B、Q、N、D中任取一点记为F.设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为_答案解析基本事件的总数是4416,在中,当,时,点G分别为该平行四边形各边的中点,此时点G在平行四边形的边界上,而其余情况的点G都在平行四边形外,故所求的概率是1.6 若集合Aa|a100,a3k,kN*,集合Bb|b100,b2k,kN*,在AB中随机地选取一个元素,则所选取的元素恰好在AB中的概率为_答案解析易知A3,6,9,99,B2,4,6,100,则AB6,12,18,96,其中有元素16个AB中元素共有33501667(个),所求概率为.三、解答题7 (13分)(xx北京)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率(2)试估计生活垃圾投放错误的概率(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a0,abc600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值(注:s2(x1)2(x2)2(xn)2,其中为数据x1,x2,xn的平均数)解(1)厨余垃圾投放正确的概率约为.(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()0.7,所以P(A)约为10.70.3.(3)当a600,bc0时,s2取得最大值因为(abc)200,所以s2(600200)2(0200)2(0200)280 000.即s2的最大值为80 000.
展开阅读全文