资源描述
第58讲古典概型考纲要求考情分析命题趋势1.理解古典概型及其概率计算公式2会计算一些随机事件所含的基本事件数及事件发生的概率.2017山东卷,82016江苏卷,72016天津卷,16古典概型主要考查实际背景的等可能事件,通常与互斥事件、对立事件等知识相结合进行考查.分值:5分1基本事件的特点(1)任何两个基本事件都是_互斥_的;(2)任何事件(除不可能事件)都可以表示成_基本事件_的和2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型(1)有限性:试验中所有可能出现的基本事件_只有有限个_;(2)等可能性:每个基本事件出现的可能性_相等_3古典概型的概率公式P(A).1思维辨析(在括号内打“”或“”)(1)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同()(2)从3,2,1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同()(3)分别从3名男同学、4名女同学中各选一名作代表,那么每个同学当选的可能性相同()(4)利用古典概型的概率公式求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率()(5)“从长为1的线段AB上任取一点C,求满足AC的概率是多少”是古典概型()解析 (1)错误摸到红球的概率为,摸到黑球的概率为,摸到白球的概率为.(2)正确取到小于0的数的概率为,取到不小于0的数的概率也为.(3)错误男同学当选的概率为,女同学当选的概率为.(4)错误由于正方形内点的个数具有无限性,与古典概型不符(5)错误线段上的点及所取的点不具有古典概型所满足的有限性,所以(5)错误2从甲、乙、丙三人中任选两名代表,甲被选中的概率为(C)ABCD1解析 基本事件总数为(甲、乙)、(甲、丙)、(乙、丙)共3种,甲被选中共2种,则P.3从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是(D)ABCD解析 从六个数中任取2个数有15种方法,取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P1.4从分别写有1,2,3,4,5的五张卡片中依次取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为(D)ABCD解析 列举法:从分别写有1,2,3,4,5的五张卡片中依次取两张,总的情况为:(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)共20种情况两张卡片上的数字之和为偶数的有:(1,3),(1,5),(2,4),(3,1),(3,5),(4,2),(5,1),(5,3)共8种情况从分别写有1,2,3,4,5的五张卡片中依次取两张,这两张卡片上的数字之和为偶数的概率P,故选D5将甲、乙两球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率为(B)ABCD解析 依题意得,甲、乙两球各有3种不同的放法,共9种放法,其中1,2号盒子中各有一个球的放法有2种,故有1,2号盒子中各有一个球的概率为.一简单的古典概型问题求古典概型概率的基本步骤(1)算出所有基本事件的个数n.(2)算出事件A包含的所有基本事件的个数m.(3)代入公式P(A),求出P(A)【例1】 (1)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(B)ABCD1(2)从分别标有1,2,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是(C)ABCD解析 (1)从15个球中任取2个球共有C种取法,其中有1个红球,1个白球的情况有CC50(种),所以P.(2)所求概率为P.二复杂的古典概型问题求较复杂事件的概率问题的方法(1)将所求事件转化成彼此互斥的事件的和事件,再利用互斥事件的概率加法公式求解(2)先求其对立事件的概率,再利用对立事件的概率公式求解【例2】 为振兴旅游业,四川省面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)某旅游公司组织了一个有36名游客的旅游团到四川名胜景区旅游,其中是省外游客,其余是省内游客在省外游客中有持金卡,在省内游客中有持银卡(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率解析 (1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡设事件A为“采访该团2人,恰有1人持银卡”,则P(A),所以采访该团2人,恰有1人持银卡的概率是.(2)设事件B为“采访该团2人,持金卡与持银卡人数相等”,可以分为事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况则P(B)P(B1)P(B2),所以采访该团2人,持金卡与持银卡人数相等的概率是.三知识交汇中的古典概型问题古典概型可以出现在很多问题背景下,关键是理解题目的实际含义,找出基本事件的总数及目标事件的数目【例3】 (2017山东卷)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望E(X)解析 (1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M).(2)由题意知X可取的值为:0,1,2,3,4,则P(X0),P(X1),P(X2),P(X3),P(X4).因此X的分布列为X01234PX的数学期望是E(X)0P(X0)1P(X1)2P(X2)3P(X3)4P(X4)012342.1投掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是(B)ABCD解析 抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3;共6种,而抛掷两枚质地均匀的骰子的情况有36种,所以所求概率P,故选B2已知函数f(x)x3ax2b2x1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为(D)ABCD解析 f(x)x22axb2,要使函数f(x)有两个极值点则有(2a)24b20,即a2b2.由题意知所有的基本事件9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值满足a2b2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为.3盒子中装有标有数字且大小相同的小球,其中m个小球标有数字1,3个小球标有数字3,2个小球标有数字5.若从盒子中任取2个球,可得这两个球所标数字之和为6的概率是.若从盒子中任取3个球,则三个球所标数字之和小于10的概率为(B)ABCD解析 依题意,化简得13m263m100,解得m5,任取3个球它们所标数字之和小于10的情况有:(1,1,1),(1,1,3),(1,1,5),(1,3,3),(1,3,5),(3,3,3),故所求概率为:.4某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数的及对应人数统计结果如下表.答对题目个数0123人数5102015根据上表信息解答以下问题:(1)从这50名学生任选两人,求两人答对题目个数之和为4或5的概率;(2)从这50名学生中任选两人,用X表示这两名学生答对题目之差的绝对值,求随机变量X的分布列及数学期望E(X)解析 (1)记“两人答对题目个数之和为4或5”为事件A,则P(A),即两人答对题目个数之和为4或5的概率为.(2)依题意可知X的可能取值分别为0,1,2,3.则P(X0),P(X1),P(X2),P(X3).从而X的分布列为X0123PX的数学期望E(X)0123.易错点将基本事件的“等可能”与“非等可能”弄错错因分析:误认为题目中所有的基本事件的出现都是等可能的,而有些时候基本事件的出现不是等可能的,从而造成错解,如对于下面的例题会误认为基本事件共有4个:(正正正)(正正反)(正反反)(反反反),其实这四种结果的出现不是等可能的【例1】 同时投掷三枚质地均匀的硬币一次,三枚硬币同时正面向上的概率为_解析 由题意作出树状图如下一共有8种情况,三枚硬币同时正面向上只有1种情况,所以,P(三枚硬币同时正面向上).答案 【跟踪训练1】 (2016江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后投掷2次,则出现向上的点数之和小于10的概率是_.解析 先后抛掷2次骰子,所有可能出现的情况可用数对表示为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个其中点数之和不小于10的有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个从而点数之和小于10的数对共有30个,故所求概率P.课时达标第58讲解密考纲古典概型在高考中常以选择题或填空题的形式出现,有时与集合、函数、不等式等知识综合,以解答题形式出现一、选择题1从1,2,3,4,5中随机选取一个数a,从1,2,3中随机选取一个数b,则ab的概率为(D)ABCD解析 从1,2,3,4,5中随机选取一个数的取法有5种,从1,2,3中随机选取一个数的取法有3种,所以a,b的可能结果有5315种,其中ab的结果有(1,2),(1,3),(2,3),共3种所以所求概率为P,故选D2随机掷两枚质地均匀的骰子,它们向上的点数之和不超过4的概率记为p1,点数之和大于8的概率记为p2,点数之和为奇数的概率记为p3,则(A)Ap1p2p3Bp2p1p3Cp1p3p2Dp3p1p2解析 随机掷两枚质地均匀的骰子,共有36种不同结果,其中向上的点数之和不超过4的有6种不同结果;点数之和大于8的有10种不同结果;点数之和为奇数的有18种不同结果,故p1,p2,p3,故p1p2p3.3有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)ABCD解析 甲、乙两位同学参加3个小组的所有可能性有339(种),其中甲、乙两人参加同个小组的情况有3种,故甲、乙两位同学参加同一个兴趣小组的概率P.4从1,2,3,4这四个数字中一次随机取两个,则取出的这两个数字之和为偶数的概率是(B)ABCD解析 从1,2,3,4这四个数字中一次随机取两个,共有6种情况,其中取出的这个数字之和为偶数的情况有(1,3),(2,4),共2种,所以P.5把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程组只有一组解的概率是(D)ABCD解析 方程组只有一组解,除了这两种情况之外都可以,故所求概率P.6甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b1,2,3,4,5,6,若|ab|1,就称甲、乙“心相近”现任意找两人玩这个游戏,则他们“心相近”的概率为(D)ABCD解析 试验包含的基本事件共有6636种结果其中满足题设条件的有如下情况:若a1,则b1,2;若a2,则b1,2,3;若a3,则b2,3,4;若a4,则b3 ,4 ,5 ;若a5,则b4,5,6;若a6,则b5,6.共16种故他们“心相近”的概率为P.二、填空题7甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_.解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种故所求概率为P.8某班班会准备从含甲、乙、丙的7名学生中选取4人依次发言,要求甲、乙两人至少有一人发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为_.解析 若甲、乙两人只有一人参加时,不同的发言顺序有CCA种;若甲、乙同时参加时,不同的发言顺序有CA种,而甲、乙两人都发言且发言顺序不相邻情况有AA种,所求概率为.9(2017山东潍坊模拟)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为.解析 由茎叶图知甲在五场比赛中的得分总和为1819202122100;乙运动员在已知成绩的四场比赛中得分总和为1516182877,乙的另一场得分是20到29十个数字中的任何一个的可能性是相等的,共有10个基本事件,而事件“甲的平均得分不超过乙的平均得分”就包含了其中的23,24,25,26,27,28,29共7个基本事件,所以甲的平均得分不超过乙的平均得分的概率为.三、解答题10一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求nm2的概率解析 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个从袋中取出的球的编号之和不大于4的事件共有1,2,1,3两个因此所求事件的概率P.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个又满足条件nm2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件nm2的事件的概率为P1.故满足条件nm2的事件的概率为1P11.11(2016天津卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望解析 (1)由已知,有P(A).所以事件A发生的概率为.(2)随机变量X的所有可能取值为0,1,2.P(X0),P(X1),P(X2).X012P随机变量X的数学期望E(X)0121.12一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b,c.(1)z(b3)2(c3)2,求z4的概率;(2)若方程x2bxc0至少有一根x1,2,3,4,就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率解析 (1)因为是投掷两次,因此基本事件(b,c):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个当z4时,(b,c)的所有取值为(1,3),(3,1),所以P(z4).(2)若方程一根为x1,则1bc0,即bc1,不成立若方程一根为x2,则42bc0,即2bc4,所以若方程一根为x3,则93bc0,即3bc9,所以若方程一根为x4,则164bc0,即4bc16,所以由知,(b,c)的所有可能取值为(1,2),(2,3),(3,4)所以方程为“漂亮方程”的概率为P.12
展开阅读全文