数学思考2 (2)

上传人:仙*** 文档编号:104681570 上传时间:2022-06-10 格式:DOC 页数:5 大小:289.51KB
返回 下载 相关 举报
数学思考2 (2)_第1页
第1页 / 共5页
数学思考2 (2)_第2页
第2页 / 共5页
数学思考2 (2)_第3页
第3页 / 共5页
点击查看更多>>
资源描述
6.8 数学思考数学思考 六数 亢丽华教学内容:人民教育出版社六年级下册P91数学思考例1教学目标:1、借助画图、列表等方法,在动手操作的过程中探寻“平面端点连接线段”的规律。2、在解决问题的具体情境中,经历并体验“复杂问题从简单入手”的解题策略和思想。3、引导回顾解决问题的思考过程,提高对数学思想价值的认识。教学过程:一、导入1、谈话设疑:师:同学们,在上课前,咱们先来做个游戏,挑战一下自己,敢不敢,请听清楚要求:练习纸上有8个点,每两个点连成一条线段,一共可以连成多少条线段呢?请同学们动笔连一连,再数一数,时间2分钟,看谁最先得出答案!2、学生动手操作。3、汇报交流:师:同学们,有结果了吗?(学生汇报结果)怎么会有这么多不同的答案呢?可正确的答案只有1个!到底谁的答案才是正确的呢?看来这个问题可能有点难度! 没关系! 我们暂且把它放在一边,待会儿再去评判, 下面我们先开始今天的学习与研究,看看大家能不能从中得到启示。二、新授探究一:从简到繁,感知算理师:同学们,用8个点来连线,我们觉得很困难,如果把点数减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。师:两个点可以连成几条线段?(学生可能回答:两点只能连成1条线段。(课件出示) )点数增加条数总条数1师:在两个点的基础上增加1个点(课件出示),这时候一共可以连成几条线段?(学生猜想,动笔,得出答案。)师:只增加了一个点,为什么却增加了2条线段呢?(引导学生明确:增加的一个点可以和原有的两个点分别连成一条线段,所以在原有基础上增加了两条线段。)师:你说得很好!为了便于观察,我们把这次连线情况记录在表格里。(课件动态演示,如下图)点数增加条数2总条数13师:在3个点的基础上又增加1个点,你猜可能会增加几条线段?(学生可能回答:可能会增加3条线段。)师:怎么会是3条呢?刚才两个点时,增加一个点,只增加了2条线段啊!(学生可能回答:增加的一个点与原来的3个点都可以连接1条线段,所以会增加3条线段。)(媒体出示:)点数增加条数23总条数136师:请大家想一想:5个点一共可以连成多少线段呢?师:谁把你的想法和大家交流一下(学生可能回答:6410(条) )(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示。)点数增加条数234总条数13610师:5个点时连成线段的总数,这位同学是用计算的方法得出的,现在请同学们仔细观察表格中的几组数据:3个点时连成线段的总条数,可不可以也用计算的方法得出?(学生观察表格,依次得出:3个点时连成线段的总条数:123(条)4个点时连成线段的总条数:1236(条)5个点时连成线段的总条数:123410(条)师:仔细观察这张表格,在这张表格里有哪些信息呢?师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,看表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,指名一学生展示作品并介绍连线情况,课件演示:完整表格中6个点的图与数据)点数增加条数2345总条数1361015探究二:观察算式,感知规律师:请大家仔细观察这几道算式,你有什么发现?(引导学生从算法、加数的特点、加数的个数等方面去观察发现)师:这里每一道算式都是一组从1开始的连续自然数之和。到底几个连续自然数相加呢?你还有什么发现?(得出加数的个数与点数之间的关系。)(学生可能回答:计算总线段数其实就是从1开始加2,加3,加4,一直加到比点数少1的数。)师:不错。通过观察、思考,我们发现:总线段数其实就是从1依次连加到点数减1的那个数的和。所以,我们只要知道点数是几,就从1开始,依次加到几减1,所得的和就是总线段数。你们都明白了吗?师:想一想,计算n个点连成线段的条数可以怎样列式? (学生独立思考、回答、相互补充得出:123(n1) )(师生共同理解算式的含义:从1开始(n1)个连续自然数的和,即123n(1n)n2 )师:下面我们运用这条规律去计算一下6个点和8个点时一共可以连多少条线段,请看课本第91页,把算式写在书上相应的横线上!(学生独立完成,教师巡视,再集体讲评。)探究三:回应课前设疑,进一步提升(1)师:现在我们就知道了课前游戏的答案,在纸上任意点上8个点,每两点连成一条线,可以连成28条线段。有这么多条,难怪同学们在数线段有多少条时这么麻烦呢!看来利用这个规律可以非常方便的帮助我们计算点数较多时的总线段数。下面你们能根据这个规律,计算出12个点、20个点能连多少条线段吗?请写出算式。(学生独立完成)(2)反馈师:我们来看看答案吧!(课件出示:12个点共连了123456789101166(条)师:20个点共连的线段数为:12345一直加到19,为了书写方便,这些算式还可以省略不写中间的一些加数,算式可以写成:12319190(条)(课件出示)三、练习师:下面,我们一起来看看小精灵聪聪给我们带来了什么题目!(课件出示:1、(课本P94/练习十八 2、)师:同学们,你们可以先用小棒摆一摆,找找其中的规律。(学生独立完成,鼓励学生多角度思考问题,多样化的解决方法。)(学生可能回答:第几个图形就由几个三角形组成,其中第、个图形是平行四边形,第、个图形是梯形。从第个图形起,每个图形比前一个图形多用2根小棒。也就是所用小棒的根数为: 3, 5, 7, 9, 11, 13, 15,(1)第6个图形是平行四边形。(2)摆第7个图形需要用15根小棒。 )2、(课本P94/练习十八 3、)师:仔细观察表格,你能找出规律吗?请大家想想多边形的内角和与它的边数有什么关系呢?(小组交流,反馈。)(引导学生发现:多边形里分成的三角形个数正好是这个多边形的边数2,所以,多边形内角和就等于边数减2的差去乘180。)(九边形的内角和是180(92)1260)四、总结师:今天这节课,我们一起学习了找规律,说一说,你有什么收获?师:我们通过眼睛观察、动手操作、动脑思考,找到了解决问题的规律。更重要的是我们学会了把复杂问题转化为简单问题入手。推理发现规律,合理运用规律,创造性地使用规律,让规律为我们的学习和生活服务。我们要善于运用这样的学习方法学习新的知识。五、作业课本P94/练习十八 1、附板书设计:数学思考3个点连成线段的条数:123(条)4个点连成线段的条数:1236(条)5个点连成线段的条数:123410(条)6个点连成线段的条数:1234515(条)n个点连成线段的条数:123n(1n)n25
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!