数字时钟的Multisim设计及仿真

上传人:痛*** 文档编号:104220366 上传时间:2022-06-10 格式:DOC 页数:5 大小:102KB
返回 下载 相关 举报
数字时钟的Multisim设计及仿真_第1页
第1页 / 共5页
数字时钟的Multisim设计及仿真_第2页
第2页 / 共5页
数字时钟的Multisim设计及仿真_第3页
第3页 / 共5页
点击查看更多>>
资源描述
-电子电路Multisim设计和仿真学院:专业和班级:学号:数字时钟的Multisim设计和仿真一、设计和仿真要求学习综合数字电子电路的设计、实现和调试1.设计一个24或12小时制的数字时钟。2. 要求:计时、显示准确到秒;有校时功能。采用中小规模集成电路设计。3.发挥:增加闹钟功能。二、总体设计和电路框图1.设计思路1).由秒时钟信号发生器、计时电路和校时电路构成电路。2).秒时钟信号发生器可由555定时器构成。3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。2.电路框图分计数器时计数器秒计数器译码器译码器译码器校时电路秒信号发生器数码管显示数码管显示数码管显示图1. 数字钟电路框图三、子模块具体设计1.由555定时器构成的1Hz秒时钟信号发生器。由下面的电路图产生1Hz的脉冲信号作为总电路的初输入时钟脉冲。图2. 时钟信号发生电路2.分、秒计时电路及显示局部在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D的反响置数法来实现十进制功能和六进制功能,根据74LS160D的构造把输出端的0110十进制为6用一个与非门74LS00引到CLR端便可置0,这样就实现了六进制计数。由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法。显示局部用的是七段数码管和两片译码器74LS48D。图3. 分秒计时电路3. 时计时电路及显示局部由两片十进制同步加法计数器74LS160级联产生,采用的是同步置数法,u1输出端为0011十进制为3与u2输出端0010十进制为2经过与非门接两片的置数端。显示局部用的是七段数码管和两片译码器74LS48D。图4. 时计时电路4.校时电路校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。如图,当开关A,B闭合,C,D断开时,电路进展正常的计时工作;当开关A,B断开,C,D闭合时,就可以自动进展校时。当然也可以手动校准时间,这是需要不断地闭合、断开开关,每次只改变一个数。其中C是校时开关,D是较分开关,开关E用来控制秒得校准,断开时,秒显示为0。图5. 校时电路四、整体电路原理图整体电路共分为五大模块:脉冲产生局部、计数局部、译码局部、显示局部、校时局部。主要由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管、时间校准电路构成。数字钟数字显示局部,采用译码与二极管串联电路,将译码器、七段数码管连接起来,组成十进制数码显示电路,即时钟显示。要完成显示需要6个数码管,八段的数码管需要译码器械才能显示,然后要实现时、分、秒的计时需要60进制计数器和24进制计数器,在在仿真软件中发生信号可以用函数发生器仿真,频率可以随意调整。60进制可能由10进制和6进制的计数器串联而成,频率振荡器可以由晶体振荡器分频来提供,也可以由555定时来产生脉冲并分频为1Hz。计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。图6. 整体电路图五、仿真结果1.1hz脉冲产生电路仿真振荡器可由晶振组成,也可以由555与RC组成的多谐振荡器。由555定时器得到1Hz的脉冲,功能主要是产生标准秒脉冲信号和提供功能扩展电路所需要的信号。仿真分析开场前可双击仪器图标翻开仪器面板。准备观察被测试波形。按下程序窗口右上角的启动停顿开关状态为1,仿真分析开场。假设再次按下,启动停顿升关状态为0,仿真分析停顿。电路启动后,需要调整示波器的时基和通道控制,使波形显示正常。为了便于观察特把频率加大。由图可见,所设计的电路可以产生方波。图7(b). 产生1Hz的脉冲波形图7(a). 产生1kHz的脉冲波形2. 脉冲输出电压观察在仪表栏里选用万用表接到555定时电路的输出端,设置万用表输出为直流电压。点击运行按钮,由仿真结果可知脉冲输出电压较稳定,开场小幅度变化,最后稳定在3.33v。与最初设计根本相符。图8. 脉冲数出电压电路3.60进制计数器计数仿真结果如图连接好电路,点击运行按钮,经过观察电路仿真结果所设计的电路是正确的,可以正常工作。计数显示从0到59。当计数器数到59后有一个短暂的60显示,这是异步清零的原因。实际工作后不会出现计数不准的现象。图9. 60进制计数器计数仿真电路4.24进制计数器计数仿真结果给电路加脉冲信号源,频率可以加大。如图,频率为1kHz,经过观察电路的仿真结果可以看到显示数字是从0到23与设计相符。特别注意74LS160的连接。图10. 24进制计数器计数仿真电路5. 总体电路仿真结果1). 秒计数向分计数进位仿真。如图连接好电路,点击运行后,可以看到秒计数计到59后可以向分计数器进位,电路运行正常。2). 分计数向时计数进位仿真。给分计数器的个位计数片上加1kHz的时钟信号源,经过运行仿真后,可以看出分位计数到59时可以向时位进位。电路运行正常。6. 开关校时电路仿真结果校时电路由开关、或非门和反相器构成,当A、B、E闭合,C、D断开时,电路正常计时;当A、B随意,C、D闭合时,时,分自动校时;当手动校时时,每开关一次示数增加1。 E开关用来较秒的,闭合时正常工作,断开时秒显示器为零,整个电路不工作。可以起到较秒的作用。经过仿真实验开关设置合理,可以起到预定的效果,能够有效地校准时、分、秒。六、结论由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管设计了数字时钟电路,经过仿真得出较理想的结果,说明电路图及思路是正确的,可以实现所要求的根本功能:计时、显示准确到秒、时分秒校时。七、利用Multisim仿真软件设计体会通过对软件Multisim的学习和使用,进一步加深了对数字电路的认识。在仿真过程中遇到许多困难,但通过自己的努力和同学的帮助都一一克制了。首先,连接电路图过程中,数码管不能显示,后经图形放大后才发现是电路断路了。其次,布局的时候因元件比拟多,整体布局比拟困难,因子电路不如原电路直观,最后在不断努力下,终于不用子电路布好整个电路。调试时有的器件在理论上可行,但在实际运行中就无法看到效果,所以得换不少器件,有时无法找出错误便更换器件重新接线以使电路正常运行。在整个设计中,74LS160的接线比拟困难,反复修改了屡次,在认真学习其用法后采用归零法和置数法设计出60进制和24进制的计数器。同时,在最后仿真时,预置的频率一开场用的是1hz,结果仿真结果反响很慢,后把频率加大,这才在短时间就能看到全部结果。总之,通过这次对数字时钟的设计与仿真,为以后的电路设计打下良好的根底,一些经历和教训,将成为珍贵的学习财富。. z.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!