资源描述
一、选择题1. (2019湖南怀化) 一元一次方程x-2=0的解是( )A. x=2 B.x=-2 C.x=0 D.x=12. (2019四川巴中,5,4分) 已知关于x,y的二元一次方程组的解是,则a+b的值是( )A.1B.2C.1D.03. (2019四川省乐山)九章算术第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。问人数、物价各多少?”根据所学知识,计算出人数、物价分别是 () A1,11 B7,53 C7,61 D6,504. (2019天津市)方程组的解是( ) 5. (2019浙江宁波,11题,4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元,若只买8支玫瑰,则她所带的钱还剩下( )A.31元B.30元C.25元D.19元6. (2019浙江台州,6题,4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y已经列出一个方程,则另一个方程正确的是( )A.B.C.D.7. (2019重庆A卷)九章算术中有这样一个题:今有甲乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而钱亦五十问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为 ( ) ( )A B C D8. (2019四川南充) 九章算术是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为斤,则可列方程组为ABCD9.(2019贵州黔东南)如果3ab2m1与9abm+1是同类项,那么m等于()A2B1C1D010. (2019湖北荆门,8,3分)欣欣服装店某天用相同的价格a(a0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A盈利 B亏损C不盈不亏D与售价a有关11. (2019湖北荆门,3,3分)已知实数x,y满足方程组3x-2y=1,x+y=2则x22y2的值为()A1B1C3D312. (2019山东德州,8,4分) 孙子算经中有一道题,原文是:“今有木,不知长短引绳度之,余绳四足五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为A BC D13. (2019山东菏泽,5,3分)已知x=3y=-2是方程组ax+by=2bx+ay=-3的解,则a+b的值是()A1B1C5D514. (2019四川南充,6,3分)关于的一元一次方程的解为,则的值为A9B8C5D415. (2019台湾省,20,3分)某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车若他们缆车费用的总花费为4100元,则此旅行团共有多少人?参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A16B19C22D2516.(2019浙江嘉兴,8,3分)中国清代算书御制数理精蕴中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为A B C D二、填空题1. (19湖南岳阳,15,4分)我国古代的数学名著九章算术中有下列问题:“今有女子善织,日自倍,五日织五尺问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺,问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布 尺2. (19山东泰安,14题,4分)九章算术是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子的重量忽略不计),问黄金,白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为_.3. (2019四川省凉山市,13,4) 方程的解是 4. (19四川眉山,15,3分)已知关于x、y的方程组的解满足x+y=5,则k的值为 5. (19四川自贡,16,4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .6.(2019浙江省衢州市,13,4分) 已知实数m,n满足则代数式m2-n2的值为 。7. (2019重庆A卷,18,4)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 8. (2019贵州黔东南,15,3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是 元9. (2019贵州黔东南,14,3分)已知x=ay=b是方程组2x+y=6x+2y=-3的解,则a+b的值为 10. (19湖北鄂州,12,3分)若关于x、y的二元一次方程组x-3y=4m+3x+5y=5的解满足x+y0,则m的取值范围是 11. (2019江苏宿迁,13,3分)下面3个天平左盘中“”“”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为 12. (2019山东菏泽,17,3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 块 13. (2019四川成都,11,3分)若m+1与2互为相反数,则m的值为 14. (2019四川绵阳,15,3分)单项式x|a1|y与2xb-1y是同类项,则ab 三、解答题1. (2019浙江金华,18,6分)解方程组:2. (2019山东省淄博市,21,8分)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A、B两种产品在欧洲市场热销今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润售价成本),其每件产品的成本和售价信息如下表:AB成本(单位:万元/件)24售价(单位:万元/件)57问该公司这两种产品的销售件数分别是多少?3. (2019山东省潍坊市,19,5分)已知关于x,y的二元一次方程组的解满足xy,求k的取值范围4. (2019山东聊城,20,8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装书/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?5. (2019湖南省岳阳市,20,8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩 (1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?6.(2019湖南怀化,18,8分)解二元一次方程组:7. (2019安徽省,17,8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?8. (2019甘肃武威,20,6分)小甘到文具超市去买文具请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?9. (2019甘肃省,21,6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中孙子算经中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?10. (2019广东广州,17,9分)解方程组:x-y=1x+3y=911. (2019广东省,21,7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?12. (19江苏盐城,22,10分)体育器材室有、两种型号的实心球,1只型球与1只型球的质量共7千克,3只型球与1只型球的质量共13千克(1)每只型球、型球的质量分别是多少千克?(2)现有型球、型球的质量共17千克,则型球、型球各有多少只?13. (19四川资阳,20,10分)为了参加西部博览会,资阳市计划印制一批宣传册该宣传册每本共10页,由A、B两种彩页构成已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元(注:彩页制版费与印数无关) (1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?一、选择题1. (2019湖南怀化,6,4分) 一元一次方程x-2=0的解是( )B. x=2 B.x=-2 C.x=0 D.x=1【答案】 A.【解析】解:方程x-2=0,解得:x=2故选A【知识点】一元一次方程的解2. (2019四川巴中,5,4分) 已知关于x,y的二元一次方程组的解是,则a+b的值是( )A.1B.2C.1D.0【答案】B【解析】将代入方程组,得:,解之,得:,所以a+b2,故选B【知识点】二元一次方程组3. (2019四川省乐山市,7,3)九章算术第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。问人数、物价各多少?”根据所学知识,计算出人数、物价分别是 () A1,11 B7,53 C7,61 D6,50【答案】B 【解析】本题考查了二元一次方程组的应用,设合伙人数为x人,物价为y钱,根据题意得:,解得,故选B【知识点】二元一次方程组的应用4. (2019天津市,9,3分)方程组的解是( ) 【答案】D【解析】观察方程组可以发现,两个方程中y的系数互为相反数,所以可以选择加减消元法,将两个方程相加,消去未知数y,可得x=2,从而求出y的值,故选D【知识点】加减法解二元一次方程组.5. (2019浙江宁波,11题,4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元,若只买8支玫瑰,则她所带的钱还剩下( )A.31元B.30元C.25元D.19元【答案】A【解析】设一支玫瑰x元,一支百合y元,小慧带了z元,根据题意得:5x+3yz10,3x+5yz+4,x+y,3x+3y,2x,8xz31,即小慧买8支玫瑰后,还剩31元,故选A.【知识点】二元一次方程组,消元法6. (2019浙江台州,6题,4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y已经列出一个方程,则另一个方程正确的是( )A.B.C.D.【答案】B【解析】从方程可以得到上坡的路程为xkm,平路的路程为ykm,且返程上坡成为了下坡,故方程为,故选B.【知识点】二元一次方程组7. (2019重庆A卷,7,4)九章算术中有这样一个题:今有甲乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而钱亦五十问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为 ( ) ( )A B C D【答案】A【解析】根据“甲的钱乙的钱的一半50;甲的钱的乙的钱50”可得方程组,【知识点】二元一次方程组;古代问题8. (2019四川南充,9,4分) 九章算术是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为斤,则可列方程组为ABCD【答案】C【解析】解:由题意可得,故选:C【知识点】由实际问题抽象出二元一次方程组9.(2019贵州黔东南,6,4分)如果3ab2m1与9abm+1是同类项,那么m等于()A2B1C1D0【答案】A【解析】解:根据题意,得:2m1m+1,解得m2故选:A【知识点】同类项10. (2019湖北荆门,8,3分)欣欣服装店某天用相同的价格a(a0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A盈利 B亏损C不盈不亏D与售价a有关【答案】B【解析】解:设第一件衣服的进价为x元,依题意得:x(1+20%)a,设第二件衣服的进价为y元,依题意得:y(120%)a,x(1+20%)y(120%),整理得:3x2y,该服装店卖出这两件服装的盈利情况为:0.2x0.2y0.2x0.3x0.1x,即赔了0.1x元,故选:B【知识点】一元一次方程的应用11. (2019湖北荆门,3,3分)已知实数x,y满足方程组3x-2y=1,x+y=2则x22y2的值为()A1B1C3D3【答案】A【解析】解:3x-2y=1x+y=2,+2,得5x5,解得x1,把x1代入得,1+y2,解得y1,x22y212212121故选:A【知识点】二元一次方程组的解;解二元一次方程组12. (2019山东德州,8,4分) 孙子算经中有一道题,原文是:“今有木,不知长短引绳度之,余绳四足五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为A BC D【答案】B【解析】解:设绳长尺,长木为尺,依题意得,故选B【知识点】二元一次方程组的应用13. (2019山东菏泽,5,3分)已知x=3y=-2是方程组ax+by=2bx+ay=-3的解,则a+b的值是()A1B1C5D5【答案】A【解析】解:将x=3y=-2代入ax+by=2bx+ay=-3,可得:3a-2b=23b-2a=-3,两式相加:a+b1,故选A【知识点】二元一次方程组的解14. (2019四川南充,6,3分)关于的一元一次方程的解为,则的值为A9B8C5D4【答案】C【解析】解:因为关于的一元一次方程的解为,可得:,解得:,所以,故选:C【知识点】一元一次方程的解15. (2019台湾省,20,3分)某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车若他们缆车费用的总花费为4100元,则此旅行团共有多少人?参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A16B19C22D25【答案】A【解析】解:设此旅行团有人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有人,根据题意,得,解得,则总人数为(人故选:A【知识点】二元一次方程组的应用16.(2019浙江嘉兴,8,3分)中国清代算书御制数理精蕴中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为A B C D【答案】D【解析】解:设马每匹两,牛每头两,根据题意可列方程组为:故选:D【知识点】由实际问题抽象出二元一次方程组二、填空题1. (2019湖南省岳阳市,15,4分)我国古代的数学名著九章算术中有下列问题:“今有女子善织,日自倍,五日织五尺问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺,问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布 尺【答案】【解析】设该女子第一天织布x尺,根据题意得:x2x4x8x16x=5解得:所以,该女子第一天织布尺.【知识点】一元一次方程的应用2. (2019山东泰安,14题,4分)九章算术是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子的重量忽略不计),问黄金,白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为_.【答案】【解析】甲袋中装有黄金9枚,乙袋中装有白银11枚,称重两袋相等,设每枚黄金重x两,每枚白银重y两,可得9x11y,两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10y+x)(8x+y)13,方程组为【知识点】二元一次方程组的应用3. (2019四川省凉山市,13,4) 方程的解是 【答案】【解析】由方程减去方程,得x=6,把x=6 代入x+y=10,得y=4,.故答案为.【知识点】二元一次方程组的解法4. (19四川眉山,15,3分)已知关于x、y的方程组的解满足x+y=5,则k的值为 【答案】2【解析】解:,+,得x+y=2k+1,又x+y=5,2k+1=5,解得:k=2【知识点】解二元一次方程组5. (2019四川省自贡市,16,4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .【答案】x=y+44x+5y=466【解题过程】解:根据“篮球的单价比足球的单价多4元”可列方程x=y+4;根据“买了4个篮球和5个足球,一共花费了466元”可列方程4x+5y=466.联立组成方程组x=y+44x+5y=466.【知识点】二元一次方程组的应用.6.(2019浙江省衢州市,13,4分) 已知实数m,n满足则代数式m2-n2的值为 。【答案】3【解析】本题考查方程组的解法:方法一:解方程组得m=2,n=1,所以m2-n2=22-12=3.方法二:方程组两式两边分别相乘得m2-n2=3.【知识点】二元一次方程组的解法 代数式求值 整体思想7. (2019重庆A卷,18,4)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 【答案】【解析】设该村土地总面积为a亩,该村已种植的川香、贝母、黄连面积分别为4k亩、3k亩、5k亩,根据题意得5k(a12k)a,解得a20k再令在余下的土地(20k9.5k4k3k)亩x亩种植贝母,根据题意,得(4k3.5kx)(3kx)34,解得x3k,故该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是因此答案为【知识点】二元一次方程组的应用8. (2019贵州黔东南,15,3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是 元 【答案】2000【解析】解:设这种商品的进价是x元,由题意,得(1+40%)x0.82240解得x2000,故答案为2000【知识点】一元一次方程的应用9. (2019贵州黔东南,14,3分)已知x=ay=b是方程组2x+y=6x+2y=-3的解,则a+b的值为 【答案】1【解析】解:把x=ay=b代入方程组2x+y=6x+2y=-3得:2a+b=6a+2b=-3,+得:3a+3b3,a+b1,故答案为:1【知识点】二元一次方程组的解10. (19湖北鄂州,12,3分)若关于x、y的二元一次方程组x-3y=4m+3x+5y=5的解满足x+y0,则m的取值范围是 【答案】m2【解析】解:x-3y=4m+3x+5y=5,+得2x+2y4m+8,则x+y2m+4,根据题意得2m+40,解得m2故答案是:m2【知识点】二元一次方程组的解;解一元一次不等式11. (2019江苏宿迁,13,3分)下面3个天平左盘中“”“”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为 【答案】10【解析】解:设“”的质量为x,“”的质量为y,由题意得:x+y=6x+2y=8,解得:x=4y=2,第三个天平右盘中砝码的质量2x+y24+210;故答案为:10【知识点】二元一次方程组的应用12. (2019山东菏泽,17,3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 块 【答案】11.【解析】解:设需用A型钢板x块,B型钢板y块,依题意,得:4x+3y=37x+2y=18,(+)5,得:x+y11故答案为:11【知识点】二元一次方程组的应用13. (2019四川成都,11,3分)若m+1与2互为相反数,则m的值为 【答案】1【解析】解:根据题意得:m+120,解得:m1,故答案为:1【知识点】相反数;解一元一次方程14. (2019四川绵阳,15,3分)单项式x|a1|y与2xb-1y是同类项,则ab 【答案】1【解析】解:由题意知|a1|=b-1,a1,b1,则ab(1)11,故答案为1【知识点】同类项 三、解答题1. (2019浙江金华,18,6分)解方程组:【思路分析】利用加减消元法解方程组.【解题过程】解:由,得x8y5,得6y6,解得y1把y1代入y1,得x211. 解得x3原方程组的解为【知识点】解方程组2. (2019山东省淄博市,21,8分)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A、B两种产品在欧洲市场热销今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润售价成本),其每件产品的成本和售价信息如下表:AB成本(单位:万元/件)24售价(单位:万元/件)57问该公司这两种产品的销售件数分别是多少?【思路分析】根据销售总额为2060万元,总利润为1020万元列关于二元一次方程组,从而求得两种产品的销售件数【解题过程】设A种产品销售件数为x件,B种产品销售件数为y件,由题意列方程得,解得,答:A种产品销售件数为160件,B种产品销售件数为180件.【知识点】二元一次方程组的应用3. (2019山东省潍坊市,19,5分)已知关于x,y的二元一次方程组的解满足xy,求k的取值范围 【思路分析】方法一:直接两个方程相减,得到xy的值,然后根据xy,列出不等式求解;方法二:解方程组求得x,y的值,代入不等式求k的取值范围【解题过程】方法一: 得:xy=5kxy,5k0k5方法二:解之得:xy,3k102k5k5【知识点】二元一次方程组与一元一次不等式的解法4. (2019山东聊城,20,8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装书/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【思路分析】(1)根据题意列出方程组,解得两种进货单价;(2)根据题意列出不等式,求得解集,再取值进行计算,得到结果.【解题过程】(1)设A,B两种品牌运动服的进货单价分别为x元和y元,根据题意得:,解之,得:,经检验,方程组的解符合题意.答:A,B两种品牌运动服的进货单价分别为240元和180元.(2)设购进A品牌运动服m件,则购进B品牌运动服(m+5)件,240m+180(m+5)21300,解得,m40,经检验,不等式的解符合题意,m+540+565.答:最多能购进65件B品牌运动服.【知识点】二元一次方程组的应用,不等式的应用5. (2019湖南省岳阳市,20,8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩 (1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?【思路分析】(1)设复耕土地面积为x亩,改造土地面积为y亩,根据“总共1200亩”和“复耕面积比改造面积多600亩”列方程组求解;(2)设休闲小广场的面积为m亩,则花卉园的面积为(300m)亩,根据“休闲小广场总面积不超过花卉园总面积的”列不等式求解【解题过程】(1)设复耕土地面积为x亩,改造土地面积为y亩,根据题意,得:解得:答:复耕土地面积为900亩,改造土地面积为300亩(2)设休闲小广场的面积为m亩,则花卉园的面积为(300m)亩,根据题意,得:解得:m75答:休闲小广场总面积最多为75亩【知识点】二元一次方程组的应用,一元一次不等式的应用6.(2019湖南怀化,18,8分)解二元一次方程组:【思路分析】首先将两方程相加可解出x的值,然后将x的值代入其中一个方程解出y即可.【解题过程】解:,+,得2x=8,解得x=4,把x=4代入,得y=1,所以方程组的解为.【知识点】解二元一次方程组7. (2019安徽省,17,8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【思路分析】设甲工程队每天掘进米,则乙工程队每天掘进米根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间【解题过程】解:设甲工程队每天掘进米,则乙工程队每天掘进米,由题意,得,解得,所以乙工程队每天掘进5米,(天答:甲乙两个工程队还需联合工作10天【知识点】一元一次方程的应用8. (2019甘肃武威,20,6分)小甘到文具超市去买文具请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【思路分析】根据对话分别利用总钱数得出等式求出答案【解题过程】解:设中性笔和笔记本的单价分别是元、元,根据题意,得,解得,答:中性笔和笔记本的单价分别是2元、6元【知识点】二元一次方程组的应用9. (2019甘肃省,21,6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中孙子算经中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【思路分析】设共有人,根据题意列出方程,求出方程的解即可【解题过程】解:设共有人,根据题意,得,去分母,得,解得,共有39人,15辆车【知识点】一元一次方程的应用10. (2019广东广州,17,9分)解方程组:x-y=1x+3y=9【思路分析】运用加减消元解答即可【解题过程】解:x-y=1x+3y=9,得,4y2,解得y2,把y2代入得,x21,解得x3,故原方程组的解为x=3y=2【知识点】解二元一次方程组11. (2019广东省,21,7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【思路分析】(1)设购买篮球x个,购买足球y个,根据总价单价购买数量结合购买篮球、足球共60个购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可【解题过程】解:(1)设购买篮球x个,购买足球y个,依题意得:x+y=6070x+80y=4600解得x=20y=40答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a80(60a)解得a32答:最多可购买32个篮球【知识点】二元一次方程组的应用;一元一次不等式的应用12. (19江苏盐城,22,10分)体育器材室有、两种型号的实心球,1只型球与1只型球的质量共7千克,3只型球与1只型球的质量共13千克(1)每只型球、型球的质量分别是多少千克?(2)现有型球、型球的质量共17千克,则型球、型球各有多少只?【思路分析】(1)直接利用1只型球与1只型球的质量共7千克,3只型球与1只型球的质量共13千克得出方程求出答案(2)利用分类讨论得出方程的解即可【解题过程】解:(1)设每只型球、型球的质量分别是千克、千克,根据题意,得,解得,答:每只型球的质量是3千克、型球的质量是4千克;(2)现有型球、型球的质量共17千克,设型球1个,设型球个,则,解得:(不合题意舍去),设型球2个,设型球个,则,解得:(不合题意舍去),设型球3个,设型球个,则,解得:,设型球4个,设型球个,则,解得:(不合题意舍去), 设型球5个,设型球个,则,解得:(不合题意舍去),综上,型球、型球各有3只、2只【知识点】二元一次方程组的应用13. (19四川资阳,20,10分)为了参加西部博览会,资阳市计划印制一批宣传册该宣传册每本共10页,由A、B两种彩页构成已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元(注:彩页制版费与印数无关) (1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?【思路分析】(1)设每本宣传册A、B两种彩页各有x,y张,根据题意列出方程组解答即可;(2)设最多能发给a位参观者,根据题意得出不等式解答即可【解题过程】解:(1)设每本宣传册A、B两种彩页各有x,y张,x+y=10300x+200y=2400,解得:x=4y=6,答:每本宣传册A、B两种彩页各有4和6张;(2)设最多能发给a位参观者,可得:2.54a+1.56a+240030900,解得:a1500,答:最多能发给1500位参观者【知识点】二元一次方程组的应用;一元一次不等式的应用21
展开阅读全文