浙江新高考备战2020年高考生物 考点一遍过15 自由组合定律(含解析)

上传人:Sc****h 文档编号:103493562 上传时间:2022-06-08 格式:DOC 页数:30 大小:2.56MB
返回 下载 相关 举报
浙江新高考备战2020年高考生物 考点一遍过15 自由组合定律(含解析)_第1页
第1页 / 共30页
浙江新高考备战2020年高考生物 考点一遍过15 自由组合定律(含解析)_第2页
第2页 / 共30页
浙江新高考备战2020年高考生物 考点一遍过15 自由组合定律(含解析)_第3页
第3页 / 共30页
点击查看更多>>
资源描述
考点15 自由组合定律高考频度: 难易程度:考向 基因的自由组合定律及其应用一、两对相对性状的杂交实验P黄色圆形绿色皱形F1 黄色圆形 比例 9 3 3 1F2 二、对自由组合现象的解释三、自由组合定律的实质F1形成配子时,等位基因分离的同时,非等位基因表现为自由组合。即一对等位基因与另一对等位基因的分离和组合是互不干扰的,各自独立地分配到配子中去。四、两对相对性状杂交实验现象分析PYYRR(黄圆)yyrr(绿皱) F1 YyRr(黄圆) 1/4YY(黄)2/4Yy(黄)1/4yy(绿)1/4RR(圆)2/4Rr(圆)1/16YYRR2/16YyRR2/16YYRr4/16YyRr (黄色圆形)(绿色圆形)1/4rr(皱)1/16YYrr2/16Yyrr(黄色皱形)1/16yyrr(绿色皱形)1孟德尔选取的两对相对性状的纯种亲本为黄色圆形和绿色皱形时(其中黄色和绿色是一对相对性状,圆形和皱形是另一对相对性状),F1表现型为黄色圆形,证明两对相对性状中黄色对绿色是显性性状,圆形对皱形是显性性状。2每一对相对性状的遗传都遵循分离定律,在F2中黄色绿色31,圆形皱形31,说明两对相对性状的遗传是独立的,互不干扰。3F2有四种表现型,数量比接近9331。F2中四种不同表现型的出现说明不同对的性状之间发生了重新组合,四种表现类型中有两种是亲本类型,即黄色圆形和绿色皱形,另两种是重组类型,即黄色皱形和绿色圆形。4相关结论总结F2共有16种组合,9种基因型,4种表现型。(1)基因型:(2)表现型:(3)F1的配子分析:F1在产生配子时,每对遗传因子彼此分离,不同对的遗传因子自由组合,F1产生的雌、雄配子各4种:YRYryRyr1111,图解如下:五、对自由组合现象解释的验证1实验方法:测交实验2目的:验证子一代(F1)的基因型及产生配子的比例。3方法:让子一代黄圆(YyRr)与双隐性植株绿皱(yyrr)测交。4预期结果5结论:实验结果和预期结果一致,说明F1黄圆(YyRr)确实产生了4种基因组成的配子,且比例为1111。F1在形成配子时,每对基因彼此分离,不同对的基因自由组合。六、自由组合定律9331的变式分析1基因互作(1)含义:两对独立遗传的非等位基因在表达时,有时会因基因之间的相互作用,而使杂交后代的性状分离比偏离9331的孟德尔比例,称为基因互作。(2)基因互作的各种类型及其表现型比例如下表:F1(AaBb)自交后代比例原因分析97当双显性基因同时出现时为一种表现型,其余的基因型为另一种表现型 934存在aa(或bb)时表现为隐性性状,其余正常表现或 961单显性表现为同一种性状,其余正常表现151有显性基因就表现为同一种性状,其余表现另一种性状1231双显性和一种单显性表现为同一种性状,其余正常表现或133双显性、双隐性和一种单显性表现为一种性状,另一种单显性表现为另一种性状或 14641A与B的作用效果相同,但显性基因越多,其效果越强1(AABB)4(AaBBAABb)6(AaBbAAbbaaBB)4(AabbaaBb)1(aabb)2某些致死基因或基因型导致性状的分离比改变设亲本的基因型为AaBb,符合基因自由组合定律。(1)显性纯合致死(AA、BB致死) (2)隐性纯合致死1下列关于孟德尔两对相对性状杂交实验的叙述,错误的是A两对相对性状分别由两对基因控制B每一对基因的传递都遵循分离定律CF1细胞中控制两对性状的基因相互融合DF2中有16种组合、9种基因型和4种表现型【答案】C【解析】 孟德尔对F2中两种性状之间发生自由组合的解释是:两对相对性状分别由两对基因控制,控制两对相对性状的两对基因的分离和组合是互不干扰的,其中每一对基因的传递都遵循分离定律。这样,F1产生雌雄配子各4种,比例接近1111,配子随机结合,则F2中有16种组合、9种基因型和4种表现型。2香豌豆的花色有白色和红色两种,由独立遗传的两对核等位基因(A/a、B/b)控制。白花品种甲与白花品种乙杂交,子一代全是红花,子二代红花:白花=9:7。以下分析错误的是A品种甲的基因型为AAbb或aaBBB子二代红花的基因型有4种C子二代白花植株中杂合子的比例为3/7D子二代红花严格自交,后代红花的比例为25/36【答案】C【解析】根据题意分析,子二代红花:白花=9:7,是“9:3:3:1”的变式,说明子一代是双杂合子AaBb,红花的基因型为A_B_,其余基因型都是白花(A_bb、aaB_、aabb),因此亲本纯合白花的基因型为AAbb、aaBB。根据前面的分析可知,子二代红花:白花=9:7,是“9:3:3:1”的变式,说明子一代是双杂合子AaBb,红花的基因型为A_B_,其余基因型都是白花,因此亲本纯合白花的基因型为AAbb、aaBB,A正确;子二代红花的基因型为有22=4种,B正确;子二代白花植株占总数的7份,其中有3份是纯合子,因此其中杂合的比例为4/7,C错误;子二代红花基因型及其比例为AABB:AABb:AaBB:AaBb=1:2:2:4,因此自交后代红花的比例=1/9+2/93/4+2/93/4+4/99/16=25/36,D正确。3下表是豌豆五种杂交的实验组合统计数据组别表现型高茎红花高茎白花矮茎红花矮茎白花一高茎红花矮茎红花627203617212二高茎红花高茎白花724750213262三高茎红花矮茎红花95331700四高茎红花高茎红花925328315108五高茎白花矮茎红花517523499507据此判断下列叙述不合理的是A通过第一、四组可以得出红花对白花为显性B通过第二、四组可以得出高茎对矮茎为显性C最容易获得双隐性个体的杂交组合是第五组D每一组杂交后代的纯合子的概率都相同【答案】D【解析】分析表格可知红花R对白花r为显性,高茎H对矮茎h为显性,各组亲本分别为:一组HhRrhhRr,二组HhRrHhrr,三组HHRrhhRr,四组HhRrHhRr,五组HhrrhhRr。根据题意和图表分析可知:第一、四组的亲本都是红花,但杂交后代出现了白花,说明红花对白花为显性性状,A正确;仅分析高茎这一性状,第二组的双亲都是高茎,但杂交后代出现了矮茎,说明高茎对矮茎为显性性状,此外从第四组亲本是高茎与高茎杂交,后代有矮茎,也说明高茎对矮茎为显性性状,B正确;根据表中数据可知,第五组最容易获得双隐性个体,C正确;据分析可知第三组杂交子代无纯合子,D错误。【归纳总结】基因自由组合定律与分离定律的比较项目分离定律自由组合定律研究性状一对两对或两对以上等位基因一对两对或两对以上遗传实质等位基因分离非等位基因之间的自由组合F1基因对数1n(n2)配子类型及其比例2114或2n数量相等F2配子组合数442或4n基因型种类332或3n表现型种类222或2n表现型比319331或(31)nF1测交子代基因型种类222或2n表现型种类222或2n表现型比11数量相等4两对相对性状独立遗传的两纯合亲本杂交,F2出现的重组类型中能稳定遗传的个体约占A1/8B1/3C1/5或1/3D1/16【答案】C【解析】 设控制两相对性状的基因分别为A、a和B、b,题干中两纯合亲本杂交的情况有两种,即AABBaabb或AAbbaaBB。当为AABBaabb时,则F1为AaBb,自交后,F2为A_B_、A_bb、aaB_、aabb四种类型,其中重组类型为3/16 A_bb、3/16 aaB_,其中能稳定遗传的是1/16AAbb、1/16aaBB,其比例为(1/161/16)(3/16 3/16)1/3;当为AAbbaaBB时,则F1为AaBb,自交后,F2为A_B_、A_bb、aaB_、aabb四种类型,其重组类型为9/16 A_B_、1/16aabb,其中能稳定遗传的是1/16AABB、1/16aabb,其比例为(1/161/16)(9/161/16)1/5。5某植物茎的高度受两对独立遗传的等位基因(A、a和B、b)控制,单杂合植株的茎中等高度,双杂合植株的茎最高,纯合植株的茎最矮。下列相关叙述正确的是A最高茎植株自交,子代中有9种基因型,4种表现型B两矮茎植株杂交,子代全为高茎,则亲本基因型为AABB和aabbC最高茎植株与不同矮茎植株杂交,子代中均有高茎、中茎和矮茎D茎最高的植株自交,子代中茎中等高度的个体占3/4【答案】C【解析】根据题意可知,双杂合植株(AaBb)的茎最高,单杂合植株(AaBB、Aabb、AABb、aaBb)的茎中等高度,纯合植株(AABB、AAbb、aaBB、aabb)的茎最矮。茎最高的植株(AaBb)自交,后代有双杂合植株(AaBb)的茎最高,单杂合植株(AaBB、Aabb、AABb、aaBb)的茎中等高度,纯合植株(AABB、AAbb、aaBB、aabb)的茎最矮,子代中有9种基因型,但只有3种表现型,A错误;两矮茎植株杂交,子代全为高茎,则亲本基因型可能为AABB和aabb或AAbb和aaBB,B错误;茎最高的植株(AaBb)与不同矮茎植株(AABB或AAbb或aaBB或aabb)杂交,子代子代中均有高茎、中茎和矮茎,C正确;茎最高的植株(AaBb)自交,子代中茎中等高度的个体基因型有AaBB、Aabb、AABb、aaBb,它们各自的比例均为2/16,因此子代中茎中等高度的个体占1/2,D错误。1对纯合黄色圆粒豌豆和绿色皱粒豌豆杂交实验结果的叙述中,错误的是AF1能产生4种比例相同的雌配子和雄配子BF2中圆粒和皱粒之比接近于31,与分离定律相符CF2出现4种基因型的个体DF2出现4种表现型的个体,且比例为93312如图为某植物细胞中部分染色体及相关基因。不考虑交叉互换和基因突变,则下列说法正确的是A该个体自交后代出现8种表现型B三对等位基因在减数第一次分裂后期都能自由组合C该个体与隐性纯合子测交,子代有四种基因型且比例为1:1:1:1D该细胞经减数分裂形成精细胞的基因型为ABD、ABd、abD、abd3下列有关自由组合定律的叙述,正确的是A自由组合定律是孟德尔针对豌豆两对相对性状的实验的结果及其解释归纳总结的,不适合多对相对性状的遗传B控制不同性状的基因的分离和组合是相互联系、相互影响的C在形成配子时,决定不同性状的基因的分离是随机的,所以称为自由组合定律D在形成配子时,决定同一性状的成对的基因彼此分离,决定不同性状的基因自由组合4豌豆黄色(Y)对绿色(y)呈显性,圆粒(R)对皱粒(r)呈显性,这两对遗传因子是自由组合的。甲豌豆(YyRr)与乙豌豆杂交,其后代中4种表现型的比例是3:3:1:1乙豌豆的遗传因子组成可能AyyRr、yyrrBYyRR、YYRrCYyrr、yyRrDYyRr、YyRR5在家蚕遗传中,黑色(A)与淡赤色(a)是有关蚁蚕(刚孵化的蚕)体色的相对性状,黄茧(B)与白茧(b)是有关茧色的相对性状,假设这两对相对性状自由组合,现有三对亲本组合,杂交后得到的数量比如下表所示,下列说法不正确的是黑蚁黄茧黑蚁白茧淡赤蚁黄茧淡赤蚁白茧组合一9331组合二0101组合三3010A组合一亲本一定是AaBbAaBbB组合三亲本可能是AaBBAaBBC若组合一和组合三亲本杂交,子代表现型及比例与组合三的相同D组合二亲本一定是Aabbaabb6雄蜂由未受精的卵细胞发育而来(叫孤雌生殖)。一雌蜂和一雄蜂交配产生F1,在F1雌雄个体交配产生的F2中,雄蜂基因型共有AB、Ab、aB、ab四种,雌蜂的基因型共有AaBB、AaBb、aaBB、aaBb四种,则亲本的基因型是AaabbABBAaBbAbCaaBBAbDAABBab7已知A与a、B与b、C与c 3对等位基因自由组合,基因型分别为AaBbCc、AabbCc的两个个体进行杂交。下列关于杂交后代的推测,正确的是A表现型有8种,AaBbCc个体的比例为B表现型有4种,aaBbcc个体的比例为C表现型有8种,aaBbCc个体的比例为D表现型有8种,Aabbcc个体的比例为8一种观赏植物,纯合的蓝色品种(AABB)与纯合的鲜红色品种(aabb)杂交,F1表现为蓝色,F1自交,F2表现为9蓝6紫1鲜红。若将F2中的紫色植株用鲜红色的植株授粉,则其后代的表现型及比例是A1鲜红1紫B2紫1鲜红C1蓝2紫1鲜红D3紫1蓝9水稻香味性状与抗病性状独立遗传。香味性状受隐性基因(a)控制,抗病(B)对感病(b)为显性。为选育抗病香稻新品种,进行一系列杂交实验。两亲本无香味感病与无香味抗病植株杂交的统计结果如图所示。下列有关叙述不正确的是A香味性状一旦出现即能稳定遗传B两亲本的基因型分别为Aabb、AaBbC两亲本杂交的子代中能稳定遗传的有香味抗病植株所占比例为0D两亲本杂交的子代自交,后代群体中能稳定遗传的有香味抗病植株所占比例为1/3210现用山核桃的甲(AABB)、乙(aabb)两品种作亲本杂交得F1,F1测交结果如下表,下列有关叙述不正确的是测交类型测交后代基因型种类及比例父本母本AaBbAabbaaBbaabbF1乙1/72/72/72/7乙F11/41/41/41/4AF1产生的基因型为AB的花粉可能有50%不能萌发,不能实现受精BF1自交得F2,F2的基因型有9种C将F1花粉离体培养,将得到四种表现型不同的植株D正反交结果不同,说明这两对基因的遗传不遵循自由组合定律11用某种高等植物的纯合红花植株与纯合白花植株进行杂交,F1全部表现为红花。若F1自交,得到的F2植株中,红花为272株,白花为212株;若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株。根据上述杂交实验结果推断,下列叙述正确的是AF2中白花植株都是纯合体BF2中红花植株的基因型有2种C控制红花与白花的基因在一对同源染色体上DF2中白花植株的基因型种类比红花植株的多12关于下图理解正确的是 A基因自由组合定律的实质表现在图中的B过程表示减数分裂过程C图1中基因型为Aa的子代占所有子代的D图2子代中aaBB的个体在aaB_中占13基因型为AaBb的个体与基因型为Aabb的个体杂交,两对基因独立遗传,则后代中A表现型4种,比例为1111;基因型6种B表现型2种,比例为31;基因型3种C表现型4种,比例为3131;基因型6种D表现型2种,比例为11;基因型3种14柑橘的果皮色泽同时受多对等位基因(用A、a;B、b;C、c等表示)控制,当个体的基因型中每对等位基因都至少含有一个显性基因时表现为红色,当个体的基因型中每对等位基因都不含显性基因时表现为黄色,其余表现为橙色。现用三株柑橘进行如下甲、乙两组杂交实验。实验甲:红色黄色红色橙色黄色=161;实验乙:橙色红色红色橙色黄色=3121。据此分析下列叙述不正确的是A果皮的色泽受3对等位基因的控制B实验甲亲、子代中红色果皮植株的基因型相同C实验乙橙色亲本有3种可能的基因型D若实验乙中橙色亲本的基因型已确定,则橙色子代有10种基因型15山茶花有红色花和白色花,花的颜色受到两对等位基因A、a与B、b控制,每一对基因中至少有一个显性基因(A_B_)时,表现为红色花,其他的基因组合均表现为白色花。下表是两组纯合植株杂交实验的统计结果,下列分析正确的是亲本组合F1植株性状及比例F1自交得F2植株的性状及比例红色花白色花红色花白色花白色花白色花890273212红色花白色花86024180A基因控制花瓣颜色性状的遗传遵循分离定律,不遵循自由组合定律B亲本组合的F2红色花植株中杂合子所占比例为3/4C亲本组合的F1中一株红色花植株进行测交,后代中白色花植株占1/4D若让亲本组合中的F2红色花植株自交,则F3中红色花白色花5116四季豆是一种自花传粉作物,其种皮的颜色是由两对非等位基因A(a)和B(b)控制的,而且两对基因的遗传遵循孟德尔定律。种皮细胞中有A基因,便可产生足量的黑色素;a基因不能控制色素的产生。种皮细胞中的B基因为修饰基因,可淡化黑色素的显色程度;其中,BB可使黑色素颜色完全消失,Bb使色素颜色淡化,bb不影响黑色素的显色效果。选择能产生白色种皮的一棵植株(P1)和能产生黑色种皮的一棵植株(P2)为亲本材料,实验如图所示。请回答下列问题:P1P2F1 黄褐色F2黑色 黄褐色白色3 67(1)据上述图解分析,P1和P2的基因型依次是_和_。(2)在F2中,产生黄褐色种皮的植株基因型为_,产生白色种皮的植株基因型有_种。(3)F2中杂合子植株(Bb)在减数分裂过程中,如果没有发生交叉互换,基因B与B之间的分离、基因B与b之间的分离分别发生在_和_(要求具体到前、中、后、末等)时期,在有性生殖过程中,F1中的基因B或b以_为载体传递给F2。(4)如果现有基因型为aaBB、AABB、aabb和Aabb的植株,需要在最短的时间内培育出黑色可稳定遗传的新品种,可以利用_为材料进行_育种(育种方式)。17燕麦颖色有黑色、黄色和白色三种颜色,由B、b和Y、y两对等位基因控制,只要基因B存在,植株就表现为黑颖。为研究燕麦颖色的遗传规律,进行了如图所示的杂交实验,请分析回答:(1)图中亲本中黑颖个体的基因型为_,F2中白颖个体的基因型是_。(2)F1测交后代中黄颖个体所占的比例为_。F2黑颖植株中,部分个体无论自交多少代,其后代仍然为黑颖,这样的个体占F2黑颖燕麦的比例为_。(3)现有一包标签遗失的黄颖燕麦种子,请设计最简便的实验方案,确定黄颖燕麦种子的基因型。实验步骤:_;_。结果预测:如果_,则包内种子基因型为_;如果_,则包内种子基因型为_。18玉米的株高有矮株和高株两种类型,现有3个纯合品种:1个高株(高)、2个矮株(矮甲和矮乙)。用这3个品种做杂交实验,结果如下表所示:实验组合F1F2第1组:矮甲高高3高1矮第2组:矮乙高高3高1矮第3组:矮甲矮乙高9高7矮结合上述实验结果,请回答下列问题:(株高若由1对等位基因控制,则用A、a表示;若由2对等位基因控制,则用A、a和B、b表示,依此类推)(1)玉米的株高由_对等位基因控制,它们在染色体上的位置关系是_。(2)玉米植株中高株的基因型有_种,亲本中矮甲的基因型是_。(3)若用矮甲和矮乙杂交得到的F1与矮乙杂交,则后代的表现型及其比例是_。19(2019浙江4月选考)一对表现型正常的夫妇生了一个患半乳糖血症的女儿和一个正常的儿子。若这个儿子与一个半乳糖血症携带者的女性结婚,他们所生子女中,理论上患半乳糖血症女儿的可能性是A1/12B1/8C1/6D1/320(2017浙江11月选考)豌豆子叶的黄色对绿色为显性,种子的圆粒对皱粒为显性,且两对性状独立遗传。以1株黄色圆粒和1株绿色皱粒豌豆作为亲本,杂交得到F1,其自交得到的F2中黄色圆粒黄色皱粒绿色圆粒绿色皱粒93155,则黄色圆粒的亲本产生的配子种类有A1种 B2种C3种 D4种21(2017浙江4月选考)豌豆种子的黄色(Y)和绿色(y)、圆粒(R)和皱粒(r)是两对相对性状。下列基因型中属于纯合子的是AYyRrBYYRrCYYRRDYyRR22(2016浙江10月选考)在模拟孟德尔杂交实验时,甲同学分别从下图所示烧杯中随机抓取一个小球并记录字母组合;乙同学分别从下图所示烧杯中随机抓取一个小球并记录字母组合。将抓取的小球分别放回原烧杯后,重复100次。下列叙述正确的是A甲同学的实验模拟F2产生配子和受精作用B乙同学的实验模拟基因的自由组合C乙同学抓取小球的组合类型中DR约占1/2D从中随机各抓取1个小球的组合类型有16种23(2019浙江4月选考)某种昆虫眼色的野生型和朱红色、野生型和棕色分别由等位基因A、a和B、b控制,两对基因分别位于两对同源染色体上。为研究其遗传机制,进行了杂交实验,结果见下表:回答下列问题:(1)野生型和朱红眼的遗传方式为_,判断的依据是_。(2)杂交组合丙中亲本的基因型分别为_和_,F1中出现白眼雄性个体的原因是_。(3)以杂交组合丙F1中的白眼雄性个体与杂交组合乙中的雌性亲本进行杂交,用遗传图解表示该过程。24(2019全国卷)某实验室保存有野生型和一些突变型果蝇。果蝇的部分隐性突变基因及其在染色体上的位置如图所示。回答下列问题。(1)同学甲用翅外展粗糙眼果蝇与野生型(正常翅正常眼)纯合子果蝇进行杂交,F2中翅外展正常眼个体出现的概率为_。图中所列基因中,不能与翅外展基因进行自由组合的是_。(2)同学乙用焦刚毛白眼雄蝇与野生型(直刚毛红眼)纯合子雌蝇进行杂交(正交),则子代雄蝇中焦刚毛个体出现的概率为_;若进行反交,子代中白眼个体出现的概率为_。(3)为了验证遗传规律,同学丙让白眼黑檀体雄果蝇与野生型(红眼灰体)纯合子雌果蝇进行杂交得到F1,F1相互交配得到F2。那么,在所得实验结果中,能够验证自由组合定律的F1表现型是_,F2表现型及其分离比是_;验证伴性遗传时应分析的相对性状是_,能够验证伴性遗传的F2表现型及其分离比是_。25(2019全国卷II)某种甘蓝的叶色有绿色和紫色。已知叶色受2对独立遗传的基因A/a和B/b控制,只含隐性基因的个体表现隐性性状,其他基因型的个体均表现显性性状。某小组用绿叶甘蓝和紫叶甘蓝进行了一系列实验。实验:让绿叶甘蓝(甲)的植株进行自交,子代都是绿叶实验:让甲植株与紫叶甘蓝(乙)植株进行杂交,子代个体中绿叶紫叶=13回答下列问题。(1)甘蓝叶色中隐性性状是_,实验中甲植株的基因型为_。(2)实验中乙植株的基因型为_,子代中有_种基因型。(3)用另一紫叶甘蓝(丙)植株与甲植株杂交,若杂交子代中紫叶和绿叶的分离比为11,则丙植株所有可能的基因型是_;若杂交子代均为紫叶,则丙植株所有可能的基因型是_;若杂交子代均为紫叶,且让该子代自交,自交子代中紫叶与绿叶的分离比为151,则丙植株的基因型为_。26(2018浙江4月选考)某昆虫的红眼与朱红眼、有眼与无眼分别由基因A(a)、B(b)控制,其中有一对基因位于性染色体上,且存在两对隐性基因纯合致死现象。一只红眼雌性个体与一只朱红眼雄性个体交配,F1雌性个体中有红眼和无眼,雄性个体全为红眼。让F1雌雄个体随机交配得F2,F2的表现型及比例如下表。回答下列问题:(1)有眼对无眼为_性,控制有眼与无眼的B(b)基因位于_染色体上。(2)若要验征F1红眼雄性个体的基因型,能否用测交方法?_,其原因是_。(3)F2红眼雄性个体有_种基因型,让其与F2红眼雌性个体随机交配,产生的F3有_种表现型,F3中无眼雌性个体所占的比例为_。27(2017浙江11月选考)果蝇的有眼与无眼由一对等位基因(B、b)控制,眼色的红色与白色由另一对等位基因(R、r)控制,两对基因均不位于Y染色体上。一只无眼雌果蝇与一只白眼雄果蝇交配,F1全为红眼,让F1雌雄果蝇随机交配得F2,F2的表现型及比例如下表回答下列问题(1)基因B在果蝇染色体上的位置称为_(2)果蝇的有眼与无眼中,显性性状是_,F1雄蝇的基因型是_(3)让F2中全部的红眼果蝇随机交配,理论上F3雄果蝇的表现型为_,其比例是_用测交方法鉴定F2双杂合红眼雌果蝇基因型,用遗传图解表示_。1【答案】C【解析】F1(YyRr)能产生4种比例相同的雌配子和雄配子,A正确;F2中圆粒和皱粒之比较近于31,黄色与绿色之比也接近于31,与分离定律相符,B正确;F2出现9种基因型的个体,C错误;F2出现4种表现型且比例为9331,D正确。2【答案】C【解析】自由组合定律的实质:同源染色上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。时间:减数分裂第一次分裂后期。结果:基因自由组合,产生新的基因型。该个体产生的配子及其比例为ABD:ABd:abD:abd=1:1:1:1,自交后代出现4种表现型,A错误;三对等位基因AaBb在一对同源染色体上,在减数第一次分裂后期不能自由组合,B错误;基因型为AaBbDd,产生的配子及其比例为ABD:ABd:abD:abd=1:1:1:1,隐性纯合子(aabbdd)只产生一种基因型为abd的配子,二者进行测交,子代的基因型及其比例为AaBbDd:AaBbdd:aabbDd:aabbdd=1:1:1:1,C正确;该细胞经减数分裂形成精细胞的基因型为ABD和abd或者ABd和abD,D错误。3【答案】D【解析】 自由组合定律的内容:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的基因彼此分离,决定不同性状的基因自由组合。自由组合定律是孟德尔针对豌豆两对相对性状的实验的结果及其解释归纳总结的,也适合多对相对性状的遗传。4【答案】C【解析】甲豌豆(YyRr)与乙豌豆杂交,其后代四种表现型的比例是3:3:1:1而3:3:1:1可以分解成(3:1)(1:1),说明控制两对相对性状的基因中,有一对均为杂合子,另一对属于测交类型,所以乙豌豆的基因型为Yyrr或yyRr。甲豌豆(YyRr)yyRr后代表现型有四种,且比例为(1:1)(3:1)=3:3:1:1,甲豌豆(YyRr)yyrr后代表现型有两种,且比例为(1:1)(1:1)=1:1:1:1,A错误;甲豌豆(YyRr)YyRR后代表现型有2种,且比例为(3:1)1=3:1,甲豌豆(YyRr)YYRr后代表现型有2种,且比例为1(3:1)=3:1,B错误;甲豌豆(YyRr)Yyrr后代表现型有四种,且比例为(3:1)(1:1)=3:3:1:1;甲豌豆(YyRr)yyRr后代表现型有四种,且比例为(1:1)(3:1)=3:3:1:1,C正确;甲豌豆(YyRr)YyRr后代表现型有四种,且比例为(3:1)(3:1)=9:3:3:1,甲豌豆(YyRr)YyRR后代表现型有四种,且比例为(3:1)1=3:1,D错误。5【答案】C【解析】组合一的杂交后代比例为9331,所以亲本一定为AaBbAaBb;组合二杂交后代只有白茧,且黑蚁与淡赤蚁比例为11,所以亲本一定为Aabbaabb;组合三杂交后代只有黄茧,且黑蚁与淡赤蚁比例为31,所以亲本为AaBBAaBB或AaBbAaBB;若组合一中AaBb和组合三中AaBB杂交,子代表现型及比例与组合三的相同;若组合一中AaBb和组合三中AaBb杂交,子代表现型及比例与组合三的不同。【归纳总结】推断亲代基因型的方法(1)基因填充法:先根据亲代表现型写出能确定的基因,如显性性状的基因型可用A_来表示,由于隐性性状的基因型只有一种,则用aa来表示,而子代中一对基因分别来自两个亲本,由此即可推出亲代中未知的基因型。(2)隐性纯合突破法:出现隐性性状就能写出基因型。子代中的隐性个体往往是逆推过程的突破口,由于隐性个体是纯合子(aa),因此亲代基因型中必然都有一个a基因,然后再根据亲代的表现型作进一步的推断。(3)性状分离比推断法9331AaBbAaBb。1111AaBbaabb或AabbaaBb。3311AaBbAabb或AaBbaaBb。31AabbAabb,AaBBAaBB,AABbAABb等(只要其中一对符合一对相对性状遗传实验的F1自交类型,另一对相对性状杂交只产生一种表现型即可)。6【答案】C【解析】雄蜂是属于单倍体,由未受精卵细胞直接发育而成的,所以它的染色体就没有同源染色体,能产生精子的是工蜂,蜂王(雌蜂)产生受精的和未受精的两种卵,由受精卵发育成雌性个体-蜂王和工蜂,由未受精卵发育成雄蜂。从F2中雄蜂的基因型有AB、Ab、aB、ab四种,可推知F1雌蜂的基因型为AaBb,从F2雌蜂的基因型可知,F1雄蜂的基因型为aB,则亲本的雌蜂只能产生aB一种配子,所以亲本雌蜂的基因型为aaBB,而要产生基因型为AaBb的雌蜂,亲本雄蜂的基因型只能是Ab。因此,C正确,具体图示如下:7【答案】C【解析】每对性状分开考虑,AaAa后代有2种表现型,Bbbb后代有2种表现型,CcCc后代有2种表现型,组合起来有2228种表现型;AaAa后代为AA、Aa、aa,Bbbb后代为Bb、bb,CcCc后代为CC、Cc、cc,组合起来有:AaBbCc个体的比例为;aaBbcc个体的比例为;aaBbCc个体的比例为;Aabbcc个体的比例为。8【答案】B【解析】根据题意分析可知:纯合的兰色品种与纯合的鲜红色品种杂交,F1为蓝色,F1自交,F2为9蓝:6紫:1鲜红,符合基因的自由组合规律,且双显性时为蓝色、单显性时为紫色、双隐性时为鲜红色。两对等位基因的纯合子杂交,F1为双杂合,只表现一种性状,F1自交结果F2表现为9蓝6紫1鲜红,孟德尔遗传实验中F2的分离比为9331,可推断双显性表现为蓝色(9A_B_),而单显性均表现为紫色(3A_bb+3aaB_),双隐性表现为鲜红色(1aabb),则F2中紫色植株(1/6AAbb、2/6Aabb、1/6aaBB、2/6aaBb)与鲜红色植株(aabb)杂交,其子代的基因型为1/3Aabb、1/3aaBb、1/3aabb,前两者表现为紫色,后者表现为鲜红色,比例为21,B正确。9【答案】D【解析】由题意可知,香味性状对应的基因型为aa,一旦出现即能稳定遗传,A正确;由于子代抗病感病11,可推知亲代基因型为Bb和bb,子代无香味香味31,可推知亲代基因型为Aa和Aa,所以两亲本的基因型分别是Aabb、AaBb,B正确;两亲本(Aabb、AaBb)杂交的子代中有香味抗病植株的基因型为aaBb,均为杂合子,C正确;两亲本杂交的子代为1/8AABb、1/8AAbb、1/4AaBb、1/4Aabb、1/8aaBb、1/8aabb,子代自交,后代群体中能稳定遗传的有香味抗病植株(aaBB)所占比例为1/41/41/41/81/43/64,D错误。10【答案】D【解析】根据F1与乙的测交结果可知,F1产生的基因型为AB的花粉可能50%不能萌发,不能实现受精。由表所示,F1作为母本与乙测交的后代性状分离比为1111,可见其遵循基因的自由组合定律。11【答案】D【解析】分析题意:F1自交,得到的F2植株中,红花为272株,白花为212株,即红花:白花比例接近9:7;又由于“用纯合白花植株的花粉给F1红花植株授粉”,该杂交相当于测交,得到的子代植株中,红花为101株,白花为302株,由此可以确定该对表现型由两对基因共同控制,并且A_B_表现为红花,其余全部表现为白花。由分析可知,白花的基因型可以表示为A_bb、aaB_、aabb,即F2中白花植株基因型有5种,有纯合体,也有杂合体,A错误;亲本基因型为AABBaabb,得到的F1(AaBb)自交,F2中红花植株的基因型有AABB、AABb、AaBB、AaBb共4种,B错误;由于两对基因遵循基因的自由组合定律,因此两对基因位于两对同源染色体上,C错误;F2中白花植株的基因型种类有5种,而红花植株的基因型只有4种,D正确。12【答案】C【解析】根据题意分析,图中为减数分裂形成配子的过程,图2中有两对基因,在进行减数分裂时发生基因重组,所以基因自由组合定律的实质表现在图中的过程。过程表示受精作用,不能体现基因自由组合定律的实质,A错误;根据题意分析可知,为减数分裂形成配子的过程,为受精作用,B错误;图1中受精作用过程中,雌雄配子是随机结合的,所以后代AAAaaa121,其中Aa占,C正确;图2子代中aaB_个体包括aaBb和aaBB,所以子代中aaBB的个体在aaB_中占的比例为,D错误。13【答案】C【解析】根据两对基因独立遗传,可以将基因型为AaBb的个体与基因型为Aabb的个体杂交,拆分成Aa与Aa杂交、Bb与bb杂交进行分析。Aa与Aa杂交,后代有三种基因型AA、Aa、aa,比例为121;两种表现型,比例为31。Bb与bb杂交,后代有两种基因型Bb与bb,比例为11;两种表现型,比例为11。因此基因型为AaBb的个体与基因型为Aabb的个体杂交,后代中表现型有224种,比例为(31)(11)3131,基因型有326种。14【答案】D【解析】由于黄色是隐性纯合子,根据甲中测交后代红色:橙色黄色=161,推测该性状至少受3对等位基因控制,故红色的基因型为A-B-C-,黄色的基因型为:aabbcc,橙色可能的基因型为:A-B-cc,aabbC-等。根据题意分析可知,实验甲中红色黄色红色:橙色黄色=161,相当于测交,说明果皮的色泽受3对等位基因控制,遵循基因的自由组合定律,A正确;根据以上分析可知,实验甲的亲本基因型组合为AaBbCcaabbcc,则子代红色果皮植株的基因型也是AaBbCc,B正确;实验乙中橙色红色红色橙色黄色=3121,由于后代出现了黄色果皮(1/16aabbcc),且红色亲本基因型为AaBbCc,故亲本相当于一对杂合子自交、两对杂合子测交,则橙色亲本有三种可能的基因型,分别为:Aabbcc、aaBbcc或aabbCc,C正确;根据以上分析可知,实验乙中若橙色亲本的基因型已确定,如Aabbcc,则子代的基因型一共有322=12(种),其中红色子代有2种基因型,黄色的基因型有1种,橙色子代有12-1-2=9种基因型,D错误。15【答案】D【解析】由分析可知,控制花瓣颜色性状的基因的遗传遵循自由组合定律,A错误;中F1自交得F2植株的性状及比例为红色花白色花27321297,则可推知亲本组合的基因型为AAbbaaBB,F2代红色花中只有AABB一种纯合子,故F2红色花植株中杂合子所占比例为8/9,B错误;亲本组合的基因型为AABBAAbb(或aaBB),则F1中红色花植株的基因型为AABb(或AaBB),与aabb的个体杂交,后代中白色花植株占1/2,C错误;由上面分析可知,亲本组合中的F2红色花植株的基因型为1/3AABB、2/3AABb(或1/3AABB、2/3AaBB),若其自交,则F3中白色花所占比例为2/31/41/6,故后代红色花白色花51,D正确。16【答案】(1)aaBB AAbb(2)AaBb、AABb 5(3)后期 后期 染色体(4)Aabb 单倍体【解析】(1)由于BB使色素颜色完全消失,Bb使色素颜色淡化,又因为F1为黄褐色,所以亲代种子P1(纯种白色)的基因型只能是aaBB,P2(纯种黑色)的基因型只能是AAbb。(2)在F2中,产生黄褐色种皮的植株基因型可能为AABb或AaBb,F2中种皮为白色的个体基因型有5种,分别是AABB、AaBB、aaBB、aaBb、aabb。(3)B、b基因位于染色体上,能以染色体为载体传递到F2中,F2中杂合子植株(Bb)在减数分裂过程中,如果没有发生交叉互换,两个B基因位于一条染色体的两条姐妹染色单体上,在减数第二次分裂后期,随姐妹染色单体的分离而分开。基因B与b位于同源染色体上,基因B与b在减数第一次分裂的后期随同源染色体的分离而分开。(4)黑色可稳定遗传的新品种的基因型为AAbb,单倍体育种可明显缩短育种时间,因此若在最短的时间内培育出黑色可稳定遗传的新品种,可利用Aabb为材料,进行单倍体育种。17【答案】(1)BByy bbyy (2)1/4 1/3 (3)实验步骤:将待测种子分别单独种植并自交,得F1种子 F1种子长成植株后,按颖色统计植株的比例 结果预测:F1种子长成的植株颖色全为黄颖 bbYY F1种子长成的植株颖色既有黄颖又有白颖,且黄颖白颖=31 bbYy 【解析】“只要基因B存在,植株就表现为黑颖”结合子二代中黑颖:黄颖:白颖=12:3:1可知,黑颖对应的基因型为:B-,黄颖对应的基因型为:bbY_,白颖的基因型为:bbyy。(1)由于F2中黑颖黄颖白颖1231,说明F1的基因型为BbYy,所以亲本黑颖和黄颖个体的基因型分别是BByy、bbYY, F2中白颖个体的基因型是bbyy。(2)F1的基因型为BbYy,其测交后代中黄颖(bbY_)个体所占的比例为1/21/2=1/4。F2黑颖植株中,部分个体无论自交多少代,其后代仍然为黑颖,说明其基因型是BB_ _,占F2黑颖燕麦的比例为1/3。(3)黄颖植株的基因型为bbYY或bbYy,要想鉴定其基因型,最简便的方法是将该植株自交得到F1,统计F1燕麦颖色,若全为黄颖,则该植株基因型为bbYY,若黄颖白颖=3:1,则该植株基因型为bbYy。18【答案】(1)2 2对等位基因位于非同源染色体上(2)4 AAbb或aaBB(3)高矮11【解析】(1)由第3组实验结果可知,玉米的株高由2对等位基因控制,且2对等位基因位于非同源染色体上。(2)第3组实验中F2的表现型及其比例是高矮97,因此,可推出高株的基因型有AABB、AABb、AaBB、AaBb 4种,矮株的基因型有aaBB、aaBb、AAbb、Aabb、aabb 5种,矮甲(矮乙)的基因型为AAbb或aaBB。(3)矮甲和矮乙杂交得到的F1的基因型为AaBb,与AAbb或aaBB杂交,后代的表现型及其比例是高矮11。19【答案】A【解析】根据题意分析,表现型正常的夫妇生下了患病的后代,则半乳糖血症为隐性遗传,又因为后代中患病的是女儿,则半乳糖血症不可能为伴性遗传,故该病为常染色体隐性遗传病。根据题意分析,半乳糖血症为常染色体隐性遗传病,设该病的致病基因为a,其正常的等位基因为A,则可得儿子的基因型为AA和Aa,该儿子与半乳糖血症的携带者女性结婚,理论上患半乳糖血症的女儿的可能性为为。A选项为正确答案。【点睛】本题的易错点在于学生容易混淆计算“患病的女儿”和“女儿患病”的概率的方法。计算“患病的女儿”的概率时,需要计算生出女儿的概率,需要在计算出所需的基因型概率后再乘;计算“女儿患病”的概率时,则已经默认出生的后代为女性,则不需要考虑生出女儿的的概率。20【答案】B【解析】假设相应基因为A、a和B、b,比例93155可分解成9331加上绿圆绿皱124所得到,故F1中基因型可为AaBb和aaBb,且比例11,因此亲本黄圆、绿皱的基因型分别为AaBB、aabb,所以黄色圆粒亲本能产生的配子有AB和aB两种,B正确。21【答案】C【解析】基因型为YyRr个体可能是基因型为YR、yr配子形成的受精卵或基因型为Yr和yR的配子形成的受精卵发育形成的个体,形成受精卵的配子的类型不同,是杂合子,A错误;基因型为YYRr个体是由基因型为YR和Yr的配子受精形成的受精卵发育形成的个体,配子的类型不同,是杂合子,B错误;基因型为YYRR个体是由基因型为YR的雌雄配子受精形成受精卵发育形成的个体,是纯合子,C正确;基因型为YyRR个体是由基因型为YR和yR的配子受精形成的受精卵发育形成的个体,配子的类型不同,是杂合子,D错误。22【答案】B【解析】甲同学的实验模拟F1产生配子和受精作用,A错误;乙同学模拟的是非等位基因的自由组合,B正确;乙同学抓取小球的组合类型中DR约占1/21/21/4,C错误;从中随机各抓取1个小球的组合类型有339种,D错误。【归纳总结】类型表现型基因型双显型(Y_R_)黄色圆形(9)YYRR、YYRr、YyRR、YyRr一显一隐型(Y_rr和yyR_)黄色皱形(3)YYrr、Yyrr绿色圆形(3)yyRR、yyRr双隐型(yyrr)绿色皱形(1)yyrr23【答案】(1)伴X染色体隐性遗传 杂交组合甲的亲本均为野生型,F1中雌性个体均为野生型,而雄性个体中出现了朱红眼 (2)BbXAXa BbXAY 两对等位基因均为隐性时表现为白色(3)如图【解析】根据杂交组合甲分析可得,等位基因A、a位于X染色体上;根据杂交组合乙分析可得,等位基因B、b位于常染色体上;同时结合杂交组合甲、乙、丙分析可知,白眼雄性个体是由于两对等位基因均呈隐性表达时出现。(1)分析杂交组合甲可得,野生型和朱红眼的遗传方式受到性别影响,两个野生型亲本杂交,得到全是野生型的雌性后代和既有野生型又有朱红眼雄性后代,故野生型和朱红眼的遗传方式为伴X染色体隐性遗传。(2)分析可得A、a基因位于X染色体上,后代中雌性无朱红眼,雄性有朱红眼,所以亲本基因型为XAXa和XAY,B、b基因位于常染色体上,后代中出现野生型棕眼=31,故亲本基因型为Bb和Bb,因此杂交组合丙中亲本的基因型为BbXAXa和BbXAY;F1中出现白眼雄性个体的原因可以发现是由于A、a基因和B、b基因均呈隐性表达时出现。(3)由于杂交组合丙中亲本的基因型为BbXAXa和BbXAY,故杂交组合丙F1中的白眼雄性个体的基因型为bbXaY,可产生的配子为bXa和bY,比例为11;由于B、b基因位于常染色体上,丙组F1中出现棕眼个体且没有朱红眼个体,故杂交组合乙中的雌性亲本的基因型为BbXAXA可产生的配子为BXA和bXA,比例为11;因此可获得后代基因型有BbXAXa、bbXAXa、BbXAY和bbXAY,且比例满足1111,故遗传图解如下:24【答案】(1)3/16 紫眼基因(2)0 1/2(3)红眼灰体 红眼灰体红眼黑檀体白眼灰体白眼黑檀体=9331红眼/白眼红眼雌蝇红眼雄蝇白眼雄蝇=211【解析】由图可知,白眼对应的基因和焦刚毛对应的基因均位于X染色体上,二者不能进行自由组合;翅外展基因和紫眼基因位于2号染色体上,二者不能进行自由组合;粗糙眼和黑檀体对应的基因均位于3号染色体上,二者不能进行自由组合。分别位于非同源染色体:X染色体、2号及3号染色体上的基因可以自由组合。(1)根据题意并结合图示可知,翅外展基因和粗糙眼基因位于非同源染色体上,翅外展粗糙眼果蝇的基因型为dpdpruru,野生型即正常翅正常眼果蝇的基因型为:DPDPRURU,二者杂交的F1基因型为:DPdpRUru,根据自由组合定律,F2中翅外展正常眼果蝇dpdpRU_ _出现的概率为:1/43/4=3/16。只有位于非同源染色体上的基因遵循自由组合定律,而图中翅外展基因与紫眼基因均位于2号染色体上,不能进行自由组合。(2)焦刚毛白眼雄果蝇的基因型为:XsnwY,野生型即直刚毛红眼纯合雌果蝇的基因型为:XSNWXSNW,后代的雌雄果蝇均为直刚毛红眼:XSNWXsnw和XSNWY,子代雄果蝇中出现焦刚毛的概率为0。若进行反交,则亲本为:焦刚毛白眼雌果蝇XsnwXsnw和直刚毛红眼纯合雄果蝇XSNWY,后代中雌果蝇均为直刚毛红眼(XSNWXsnw),雄性均为焦刚毛白眼(XsnwY)。故子代出现白眼即XsnwY的概率为1/2。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!