简单随机抽样教案

上传人:nu****n 文档编号:100735080 上传时间:2022-06-03 格式:DOC 页数:4 大小:97.51KB
返回 下载 相关 举报
简单随机抽样教案_第1页
第1页 / 共4页
简单随机抽样教案_第2页
第2页 / 共4页
简单随机抽样教案_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2.1.1简单随机抽样 学习目标 一、教学目标:知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。二、教学重点与难点正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。三、教学过程 新课教学 创设情境,揭示课题假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.随即点出课题:简单随机抽样.A.简单随机抽样的概念一般地,设一个总体含有个个体,从中逐个不放回地抽取个个体作为样本,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.注:1.简单随机抽样的四个特点:(1)总体的个数目有限.(2)从总体中逐个抽取.(3)不放回抽样.(4)是等可能抽样.2.当一个抽样方法同时满足以上四个特点时,则它是就简单随机抽样.3.最常用的简单随机抽样方法有两种:抽签法和随机数法.思考题:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.B.抽签法和随机数法1.抽签法(抓阄法)(1)定义:一般地,抽签法就是把总体中的个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取次,就得到一个容量为的样本.(2)抽签法抽样过程可通过下面例子来说明.例1 从某班45名学生中,要抽出8名学生参加一次座谈会,每名学生的机会均等. 请写出用抽签法抽样的过程.解:第一步,编号:将45名学生编号为1,2,45(或取现成的学号);第二步,制签:把45个号码分别写在小纸片上;第三步,搅拌:将4 5个小纸片揉成小球,放在一个不透明的袋子中,搅拌均匀;第四步,抽签:从中逐个抽取8个号签;第五步,取样:根据抽取的8个号选出相应的8名同学.(3)一般地,抽签法的一般步骤:1编号:将总体中个体从1编号;2制签:将所有编号1写在形状、大小相同的号签上;3搅拌:将号签放在一个不透明的容器中,搅拌均匀;4抽签:从容器中每次抽取一个号签,并记录其编号,连续抽取次;5取样:从总体中将与抽取到的签的编号相一致的个体取出(4)思考:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?设计意图:关于抽签法使学生进一步明确以下三点:优点:简单易行缺点:当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平,从而使抽取的样本不具代表性.当总体中的个体数很多时,用抽签法不方便,进而选用随机数法2.随机数表法(1)定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法.(2)随机数表法抽样过程可通过下面例子来说明.例2 为考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,请写出用随机数表法抽样的过程.解:第一步,对800袋牛奶编号,号码分别为000,001,799.第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行,或参考课本103页随机数表)第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本.第四步,根据选定的号码取出样本.(3)一般地,随机数表法抽样的步骤为:1编号:将总体中个体编号;2定起始数:在随机数表中任选一个数作为开始;3读取:从选定的数开始按一定的方向读取数字,若得到的数码不在编号内,则跳过;在编号中则取出;如果得到的号码前面已经读取,则也跳过.如此继续下去,直到取满为止;4抽样:根据选定的号码抽取样本. 题型示例 例 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):编号:将100件轴编号为1,2,100;制签:做好大小、形状相同的号签,分别写上这100个号码;搅拌:将这些号签放在一个不透明的容器内,搅拌均匀;抽签:逐个抽取10个号签;取样:然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):编号:将100件轴编号为00,01,99;定起始数:在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);读取:规定读数的方向,如向右读;取样:依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本. 课堂练习 P57 练习1,2,3,4 课时小结 1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但是这里一定要将每个个体入样的可能性、第次每个个体入样的可能性、特定的个体在第次被抽到的可能性这三种情况区分开业,避免在解题中出现错误. 课堂检测 1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A总体是240 B.个体是每一个学生C.样本是40名学生 D.样本容量是402.为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 A.总体 B.个体是每一个学生C.总体的一个样本 D.样本容量3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!