资源描述
微观经济学(高鸿业第四版)第二章练习题参考答案1. 已知某一时期内某商品的需求函数为Qd=50-5P,供给函数为Qs=-10+5p。(1) 求均衡价格Pe和均衡数量Qe ,并作出几何图形。(2) 假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。求出相应的均衡价格Pe和均衡数量Qe,并作出几何图形。(3) 假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。求出相应的均衡价格Pe和均衡数量Qe,并作出几何图形。解答:(1)将需求函数 = 50-5P和供给函数 =-10+5P代入均衡条件 = ,有: 50- 5P= -10+5P 得: Pe=6以均衡价格Pe =6代入需求函数 =50-5p ,得:Qe=50-5或者,以均衡价格 Pe =6 代入供给函数 =-10+5P ,得:Qe=-10+5所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 . (2) 将由于消费者收入提高而产生的需求函数=60-5p和原-供给函数=-10+5P, 代入均衡条件= ,有: Pe d 60-5P=-10=5P 得 以均衡价格 代入=60-5p ,得 Qe=60-5 或者,以均衡价格代入=-10+5P, 得Qe=-10+5所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (3) 将原需求函数=50-5p 和由于技术水平提高而产生的供给函数Qs=-5+5p ,代入均衡条件=,有: 50-5P=-5+5P得 以均衡价格代入=50-5p ,得或者,以均衡价格代入=-5+5P ,得所以,均衡价格和均衡数量分别为Pe =5.5 , Qe=22.5.2 假定表25是需求函数Qd=500-100P在一定价格范围内的需求表:某商品的需求表价格(元)12345需求量4003002001000(1)求出价格2元和4元之间的需求的价格弧弹性。(2)根据给出的需求函数,求P=2是的需求的价格点弹性。(3)根据该需求函数或需求表作出相应的几何图形,利用几何方法求出P=2时的需求的价格点弹性。它与(2)的结果相同吗?解(1)根据中点公式 ,有: (2) 由于当P=2时,所以,有:(3)根据图1-4在a点即,P=2时的需求的价格点弹性为:或者 显然,在此利用几何方法求出P=2时的需求的价格弹性系数和(2)中根据定义公式求出结果是相同的,都是。3 假定下表是供给函数Qs=-2+2P 在一定价格范围内的供给表。某商品的供给表价格(元)23456供给量246810(1) 求出价格3元和5元之间的供给的价格弧弹性。(2) 根据给出的供给函数,求P=3时的供给的价格点弹性。(3) 根据该供给函数或供给表作出相应的几何图形,利用几何方法求出P=3时的供给的价格点弹性。它与(2)的结果相同吗?解(1) 根据中点公式,有:(2) 由于当P=3时,所以 (3) 根据图1-5,在a点即P=3时的供给的价格点弹性为:PQ dACBO-3 225Q显然,在此利用几何方法求出的P=3时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是Es=1.54.图1-6中有三条线性的需求曲线AB、AC、AD。 (1)比较a、b、c三点的需求的价格点弹性的大小。 (2)比较 a、f、e三点的需求的价格点弹性的大小。解 (1) 根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于不同的线性需求曲线上的a、b、e三点的需求的价格点弹性是相等的.其理由在于,在这三点上,都有: (2)根据求需求的价格点弹性的几何方法,同样可以很方便地推知:分别处于三条线性需求曲线上的a.e.f三点的需求的价格点弹性是不相等的,且有 其理由在于: 在a点有,在 f点有,在 e点有, 在以上三式中, 由于GBGCGD所以 0为常数)时,则无论收入M为多少,相应的需求的点弹性恒等于1/2.6. 假定需求函数为Q=MP-N,其中M表示收入,P表示商品价格,N(N0)为常数。求:需求的价格点弹性和需求的收入点弹性。解 由以知条件Q=MP-N 可得: Em= 由此可见,一般地,对于幂指数需求函数Q(P)= MP-N而言,其需求的价格价格点弹性总等于幂指数的绝对值N.而对于线性需求函数Q(P)= MP-N而言,其需求的收入点弹性总是等于1.7. 假定某商品市场上有100个消费者,其中,60个消费者购买该市场1/3的商品,且每个消费者的需求的价格弹性均为3:另外40个消费者购买该市场2/3的商品,且每个消费者的需求的价格弹性均为6。求:按100个消费者合计的需求的价格弹性系数是多少?解: 另在该市场上被100个消费者购得的该商品总量为Q,相应的市场价格为P。根据题意,该市场的1/3的商品被60个消费者购买,且每个消费者的需求的价格弹性都是3,于是,单个消费者i的需求的价格弹性可以写为; 即) (1) 且 (2)相类似的,再根据题意,该市场1/3的商品被另外40个消费者购买,且每个消费者的需求的价格弹性都是6,于是,单个消费者j的需求的价格弹性可以写为: 即 (3)且 (4)此外,该市场上100个消费者合计的需求的价格弹性可以写为: 将(1)式、(3)式代入上式,得: 再将(2)式、(4)式代入上式,得: 所以,按100个消费者合计的需求的价格弹性系数是5。8.假定某消费者的需求的价格弹性Ed=1.3,需求的收入弹性Em=2.2 。求:(1)在其他条件不变的情况下,商品价格下降2%对需求数量的影响。(2)在其他条件不变的情况下,消费者收入提高5%对需求数量的影响。解 (1) 由于题知Ed=,于是有: 所以当价格下降2%时,商需求量会上升2.6%. (2)由于 Em= ,于是有: 即消费者收入提高5%时,消费者对该商品的需求数量会上升11%。9.假定某市场上A、B两厂商是生产同种有差异的产品的竞争者;该市场对A厂商的需求曲线为PA=200-QA,对B厂商的需求曲线为PB=300-0.5QB ;两厂商目前的销售情况分别为QA=50,QB=100。求:(1)A、B两厂商的需求的价格弹性分别为多少?(2) 如果B厂商降价后,使得B厂商的需求量增加为QB=160,同时使竞争对手A厂商的需求量减少为QA=40。那么,A厂商的需求的交叉价格弹性EAB是多少?(3) 如果B厂商追求销售收入最大化,那么,你认为B厂商的降价是一个正确的选择吗?解(1)关于A厂商:由于PA=200-50=150且A厂商的需求函数可以写为; QA=200-PA 于是 关于B厂商:由于PB=300-0.5100=250 且B厂商的需求函数可以写成: QB=600-2PB 于是,B厂商的需求的价格弹性为: (2) 当QA1=40时,PA1=200-40=160 且 当PB1=300-0.5160=220 且 所以(3) 由(1)可知,B厂商在PB=250时的需求价格弹性为,也就是说,对于厂商的需求是富有弹性的.我们知道,对于富有弹性的商品而言,厂商的价格和销售收入成反方向的变化,所以,B厂商将商品价格由PB=250下降为PB1=220,将会增加其销售收入.具体地有:降价前,当PB=250且QB=100时,B厂商的销售收入为: TRB=PBQB=250100=25000降价后,当PB1=220且QB1=160时,B厂商的销售收入为: TRB1=PB1QB1=220160=35200显然, TRB TRB1,即B厂商降价增加了它的收入,所以,对于B厂商的销售收入最大化的目标而言,它的降价行为是正确的.10. 假定肉肠和面包是完全互补品.人们通常以一根肉肠和一个面包卷为比率做一个热狗,并且以知一根肉肠的价格等于一个面包的价格 .(1)求肉肠的需求的价格弹性.(2)求面包卷对肉肠的需求的交叉弹性.(3)如果肉肠的价格面包的价格的两倍,那么,肉肠的需求的价格弹性和面包卷对肉肠的需求的交叉弹性各是多少?解:(1)令肉肠的需求为X,面包卷的需求为Y,相应的价格为PX, PY, 且有PX=PY,.该题目的效用最大化问题可以写为:Max U(X,Y)=minX,Y s.t.解上速方程组有:X=Y=M/ PX+PY,. 由此可得肉肠的需求的价格弹性为: 由于一根肉肠和一个面包卷的价格相等,所以,进一步,有Edx=Px/PX+PY=1/2(2)面包卷对肉肠的需求的交叉弹性为: 由于一根肉肠和一个面包卷的价格相等,所以,进一步, Eyx=-Px/PX+PY=-1/2(3)如果PX=2PY,.则根据上面(1),(2)的结果,可得肉肠的需求的价格弹性为:面包卷对肉肠的需求的交叉弹性为:
展开阅读全文